--- license: apache-2.0 base_model: mansee/swin-tiny-patch4-window7-224-img_orientation tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-img_orientation results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7794067507671326 --- # swin-tiny-patch4-window7-224-img_orientation This model is a fine-tuned version of [mansee/swin-tiny-patch4-window7-224-img_orientation](https://huggingface.co/mansee/swin-tiny-patch4-window7-224-img_orientation) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4538 - Accuracy: 0.7794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3217 | 1.0 | 412 | 0.4922 | 0.7533 | | 0.3716 | 2.0 | 825 | 0.4986 | 0.7601 | | 0.3756 | 3.0 | 1237 | 0.4427 | 0.7762 | | 0.3926 | 4.0 | 1650 | 0.4515 | 0.7733 | | 0.3859 | 5.0 | 2062 | 0.4394 | 0.7717 | | 0.3822 | 6.0 | 2475 | 0.4410 | 0.7784 | | 0.3804 | 7.0 | 2887 | 0.4561 | 0.7767 | | 0.3231 | 8.0 | 3300 | 0.4505 | 0.7784 | | 0.3295 | 9.0 | 3712 | 0.4607 | 0.7789 | | 0.321 | 9.99 | 4120 | 0.4538 | 0.7794 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3