import torch from torch.nn import Linear from transformers import XLMRobertaForSequenceClassification, XLMRobertaConfig from transformers.modeling_outputs import SequenceClassifierOutput from torch.nn import MSELoss, CrossEntropyLoss, BCEWithLogitsLoss from typing import Optional, Union, Tuple class CustomXLMRobertaModelForSequenceClassification(XLMRobertaForSequenceClassification): config_class = XLMRobertaConfig def __init__(self, config): super().__init__(config) self.final_classifier = Linear(config.hidden_size, config.num_labels) self.init_weights() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs_sentence = self.roberta(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True) sequence_output_sentence = outputs_sentence["last_hidden_state"][:, 0, :] logits = self.final_classifier(sequence_output_sentence) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits )