--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy - precision - recall model-index: - name: RoBERTa-WebAttack results: [] --- # RoBERTa-WebAttack This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0133 - F1: 0.9974 - Accuracy: 0.9974 - Precision: 0.9974 - Recall: 0.9974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:------:|:--------:|:---------:|:------:| | 0.0207 | 1.0 | 3713 | 0.0229 | 0.9956 | 0.9956 | 0.9956 | 0.9956 | | 0.0215 | 2.0 | 7426 | 0.0158 | 0.9963 | 0.9963 | 0.9963 | 0.9963 | | 0.001 | 3.0 | 11139 | 0.0133 | 0.9974 | 0.9974 | 0.9974 | 0.9974 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1