--- language: - en tags: - sequential-recommendation - direct-recommendation - explanation-generation - text2text-generation license: mit datasets: - amazon_us_reviews metrics: - NDCG - HR - MAE - BLUE - ROUGE widget: - text: "According to the purchase history of JSB727 : \n 2440 -> 1212 -> 4234 -> 4309 \n Can you recommend the next possible item to the user ?" example_title: "Sequential Recommendation" - text: "Pick the most suitable item from the following list and recommend to user_250 : \n 4915 , 1823 , 3112 , 3821 , 3773 , 520 , 7384 , 7469 , 9318 , 3876 , 1143 , 789 , 595 , 3824 , 3587" example_title: "Direct Recommendation" - text: "Based on the feature word kids , generate an explanation for user_12107 about this product : Tumblin' Monkeys Game" example_title: "Explanation Generation" --- # P5 (Toys Small) Recommendation as Language Processing: A Unified Pretrain, Personalized Prompt & Predict Paradigm ![model image](https://raw.githubusercontent.com/jeykigung/P5/main/pic/teaser.png)