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Part A) Understanding Self-Attention Mechanism Questions 1) What is the concept
of single-head self-attention?

This refers to a mechanism which is also known as the scaled dot product attention, this mechanism
allows the model to weigh the different tokens within a input sequence capturing the different de-
pendencies between tokens via a representation. This single-head self attention model will produce
attention matrix, which can be used to determine meaning through representation, or be used in
the synthesis of the output of a decoder.

Showing
the attention one word has to others. We are in essence learning the structure of language, or
image pixel values by looking at how related via trained weights.
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2) What is the concept of multi=head self-attention?

Multi-headed self attention models, use the concept of single headed self attention modules in
parallel, concatenating them, this is because one single head can generate one representation for
the input tokens, via the weights for queries, key and values, however multiple allow the module
to learn multiple different representations which add to the models robustness in understanding
inputs.

3) What is the difference between single-head and multi-head self-attention?

The main difference between these two mechanisms is that single head is run once, and such
multihead runs multiple dot scaled products, which generates multiple attention matrices which
is then concatenated, compared to single, where one attention matrix is used. Also in pratice,
when using multi-headed self-attention the dimension of the dimension of keys, values, queries is
dependant on the number of heads (based on youtube video).

Excercises

Note: For all excercises that mention dimensions, batches have been ignored, as these ask theoretical
questions, however, this would only mean initial dimension B is preappended to all dimensions.

1) Calculate the dimensions of W_q, W_v, W_k in “Single-head Attention” section?

• W_q dimension is (256, 64), in which (Embedding Dimension, Head Embedding Di-
mension)

• W_v dimension is (256, 64), in which (Embedding Dimension, Head Embedding Di-
mension)

• W_k dimension is (256, 256) in which (Embedding Dimension, Embedding Dimension)

[ ]: embdim = 256 # D
headdim = 64 # Internal D
tokens = torch.randn(1, 5, embdim) # batch, tokens, embedding
Wq = torch.randn(embdim, headdim) / math.sqrt(embdim)
Wk = torch.randn(embdim, headdim) / math.sqrt(embdim)
Wv = torch.randn(embdim, embdim) / math.sqrt(embdim)

# Dimensions of these weights are:

print(f"Wq dimensions: {Wq.shape}")
print(f"Wk dimensions: {Wk.shape}")
print(f"Wv dimensions: {Wv.shape}")

2) Calculate the dimensions of W_q, W_v, W_k in “Multi-head Attention” sec-
tion?

• For all three weights, we need to account for the number of heads also in the architecture,
the weight dimensions are embdim, headcnt * headdim:

• W_dim = (Embedding Dimension, (Head Count * Head Embedding))

• Which is (768, 768)
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[ ]: embdim = 768
headcnt = 12
headdim = embdim // headcnt
# print(headdim)
assert headdim * headcnt == embdim
tokens = torch.randn(1, 5, embdim) # batch, tokens, embedding

# We use all the 256, ( 768) ~ which is (256), (64 * 12 (heads))
Wq = torch.randn(embdim, headcnt * headdim) / math.sqrt(embdim) # heads packed␣

↪in a single dim
Wk = torch.randn(embdim, headcnt * headdim) / math.sqrt(embdim) # heads packed␣

↪in a single dim
Wv = torch.randn(embdim, headcnt * headdim) / math.sqrt(embdim) # heads packed␣

↪in a single dim

# Dimensions of these weights are:

print(f"Wq dimensions: {Wq.shape}")
print(f"Wk dimensions: {Wk.shape}")
print(f"Wv dimensions: {Wv.shape}")

3) Show the weight of the causal attention mask in “Causal attention mask” section.

• The shape of such casual mask is that of all zeros, where a upper traingle is a large negative
number like -inf, but in this case -10000

• It has dimension (N, N) which is the token numbers x token numbers, below is an example.

[12]: token_num = 5
attn_mask = torch.ones(token_num,token_num,)
attn_mask = -1E4 * torch.triu(attn_mask,1)

4) Show the figure of the causal attention mask in “Causal attention mask” section.

[14]: # Answering Excercise 4):
attn_mask

[14]: tensor([[ -0., -10000., -10000., -10000., -10000.],
[ -0., -0., -10000., -10000., -10000.],
[ -0., -0., -0., -10000., -10000.],
[ -0., -0., -0., -0., -10000.],
[ -0., -0., -0., -0., -0.]])

Part B) Understanding the structure of Transformer Questions 1) What are the main
compositional layers of a transformer?

The transformer consists of transformer blocks, in which each of these blocks, take as input inputs
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that have been embedded or the output of another transformer block, within these transformer
blocks, there are usually 2-3 sublayers, depending on whether it is a encoder or decoder.

These sublayers include Multi-head attention module and a Feedforward module, these are con-
nected by layer normalisation and residual connections (skip connection). These move forward
through the model to the output of the transformer which is the different representations of the
different tokens, these can be obtained and futher used in another MLP head, or pooled for use in
decoding.

2) What is the purpose of layer normalization in a transformer?

Normalisation in neural networks is important in order to stablise learning, via preventing extremely
large numbers that may cause exploding gradients and numeric instabilities. Two main ways for
normalisation which include layer and batch normalisation, the reasoning for layer normalisation
compared to batch normalisation is that no reliance on batches is needed to perform normalisation,
such that we can still learn in parallel without needing to deal with normalisation in batches.

3) What is the difference between the training and testing stage of a transformer?

In our coursework, training occurs each epoch, and then we use model.evaluate to test this model.
The basic idea, is that in the training, we are updating the weights through backpropagation of
these keys, values and queries weight sets whilst in inference/testing stage, we use such weights to
output the thoughtout representations of each of these inputs. In the context of using a decoder as
part of the transformer model, the output of the decoder will be compared to the target output in
order to calculate the loss.

4) What is the skip connection in a transformer?

Skip connections, were also used in RNNs, and image classifiers with really large number of hidden
layers, this is because when we have long structures, like those with a number of encoder blocks,
it becomes harder to train due to gradients becoming increasingly smaller through each backpro-
pogation of the layers, also known as vanishing gradient problem, with this residual connection,
we can make sure there are larger gradients during backpropogations by creating connections that
flow past these differentiable operations. So thier use in transformers makes sense.

5) Why does a transformer usually use multi-head attention instead of single head
one?

We usually want to learn multiple representations of the data, it is like having a second opinion
on a decision or a third or a fourth, you get a really informed decision, in relation to transformers,
we get a really good representation that is robust because we combine all of the knowledge learned
from these multiple attention blocks making them perform better up to a certain point (mentioned
in lecture).

Excercises

1) To show the projection weight (WK) of K in the multi-head attention layer (Tip:
check the PyTorch build-in class nn.MultiheadAttention).

[ ]: # In essense, the data for WK is within the function of mha layer,
print(mha.in_proj_weight.shape) # 3 * embdim x embdim
mha.in_proj_weight.data = torch.cat([Wq, Wk, Wv], dim=1).T
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# If we want to obtain weights specifically for query.
Wk = mha.in_proj_weight.data[1]

2) To show the projection weight (WQ) of Q in the multi-head attention layer

[ ]: Wq = mha.in_proj_weight.data[0]

3) To show the projection weight (WV) of V in the multi-head attention layer

[ ]: Wv = mha.in_proj_weight.data[2]

Part C) Image classification with Transformer Questions 1) How to use a trained
Transformer to perform image classification (testing stage)?

The model is trained by using the class tokens encoded representation, which is then passed onto
the MLP classifier, which is optimised based on CrossEntropyLoss. This is accessed through the
last_hidden_state attribute of the model as the first index.

I drew some diagrams to show the input embeddings are inputted to transformer, to output.

Output of class token hidden state to MLP head diagram.
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2) What are the input and the output of the Transformer?

The input and output of the transformer is the same, in the case of this coursework, I have obtained
dimension (192, 65, 256)

These dimensions represents: Batch Size, Class + Input Tokens , Model Embedding Size.

3) What augmentations are used for training data?

These are shown in the code below, however there are operations such as random crop, random
horizontal flip , normalisation and different transformation.

[ ]: transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),

]))
# augmentations are super important for CNN trainings, or it will overfit very␣

↪fast without achieving good generalization accuracy

4) What’s the difference between the preprocess of the train set and the validation
set?

In the validation set of data, augmentation include converting to tensor in order to normalise,
however does not include random cropping of the images, as we are simply testing the models
performance, and not training, this transformation allows the model to learn, but we are just
evaluating.
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Image of
random cropping shown, illustrating no need for this to be in the testing dataset, as we simply
want to determine how well the model is, not training it in evaluation.

5) Why augmentations for training data is necessary?

With these transforms, this creates more variances between dataset, in the attempt to make the
system more robust to rotation and translation variance, and better understand the images, this
allows the model to try and learn structure within the image such as inductive bias CNNs have,
such as rotation invariance and locality understanding.

Excercises

1) To load and preprocess the train set and validation set from the CIFAR10 dataset.

[ ]: !mkdir data
dataset = CIFAR10(root='./data/', train=True, download=True, transform=
transforms.Compose([

transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
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transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),

]))
# augmentations are super important for CNN trainings, or it will overfit very␣

↪fast without achieving good generalization accuracy
val_dataset = CIFAR10(root='./data/', train=False, download=True,␣

↪transform=transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.

↪2010)),]))
#%%
batch_size = 192 # 96
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)

2) To transform training images to patch embedding.

[ ]: patch_embed = nn.Conv2d(3, config.hidden_size, kernel_size=4, stride=4).cuda()

pbar = tqdm(train_loader, leave=False)
for i, (imgs, labels) in enumerate(pbar):

patch_embs = patch_embed(imgs.cuda()) # Transforms images to patch␣
↪embeddings.

3) To add a class token to the patch embedding.

[ ]: # Define Class Token.
CLS_token = nn.Parameter(torch.randn(1, 1, config.hidden_size, device="cuda") /␣

↪math.sqrt(config.hidden_size))

# Concat class token to patch embeddings.
input_embs = torch.cat([CLS_token.expand(imgs.shape[0], 1, -1), patch_embs],␣

↪dim=1)

4) To feed the input image embedding into the Transformer.

[ ]: # Model should be defined, and also shown in the coursework notebook,
output = model(inputs_embeds=input_embs)

5) To plot the training loss curve to show its variation with the epoch.

[ ]: EPOCH_RANGES = [10, 20, 30]

for epoch_range in EPOCH_RANGES:
plt.title(f"Loss/Epoch ~ {epoch_range} Epochs")
rev_loss = loss_list.copy()
# print(rev_loss)
plt.xlabel("Epochs")
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plt.ylabel("Loss")
plt.plot(rev_loss[:epoch_range])

6) To plot the accuracy score curve to show its variation with the epoch.

[ ]: EPOCH_RANGES = [10, 20, 30]
for epoch_range in EPOCH_RANGES:

plt.title(f"Accuracy/Epoch ~ {epoch_range} Epochs")
rev_acc = acc_list.copy()
rev_acc.reverse()
# print(rev_loss)
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.plot(rev_acc[:epoch_range])
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