--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy base_model: ntu-spml/distilhubert model-index: - name: CTC-based-finetuned-gtzan results: [] --- # CTC-based-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7057 - Accuracy: 0.79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0608 | 1.0 | 57 | 2.0361 | 0.43 | | 1.663 | 2.0 | 114 | 1.5387 | 0.62 | | 1.2399 | 3.0 | 171 | 1.2074 | 0.68 | | 1.0662 | 4.0 | 228 | 1.0805 | 0.65 | | 0.7986 | 5.0 | 285 | 0.8880 | 0.75 | | 0.7328 | 6.0 | 342 | 0.8037 | 0.74 | | 0.5891 | 7.0 | 399 | 0.7918 | 0.78 | | 0.5227 | 8.0 | 456 | 0.7232 | 0.79 | | 0.5123 | 9.0 | 513 | 0.7138 | 0.78 | | 0.5578 | 10.0 | 570 | 0.7057 | 0.79 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3