--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: audio-classifer-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- # audio-classifer-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6257 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9967 | 1.0 | 113 | 1.7753 | 0.47 | | 1.2821 | 2.0 | 226 | 1.2195 | 0.64 | | 0.974 | 3.0 | 339 | 0.9009 | 0.77 | | 0.7716 | 4.0 | 452 | 0.8268 | 0.75 | | 0.5884 | 5.0 | 565 | 0.7184 | 0.79 | | 0.372 | 6.0 | 678 | 0.6805 | 0.78 | | 0.4059 | 7.0 | 791 | 0.6243 | 0.82 | | 0.1737 | 8.0 | 904 | 0.5322 | 0.82 | | 0.2062 | 9.0 | 1017 | 0.5585 | 0.81 | | 0.1397 | 10.0 | 1130 | 0.6257 | 0.88 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3