--- license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: asr-wav2vec2-1b-asm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: as split: test args: as metrics: - name: Wer type: wer value: 0.8947368421052632 --- # asr-wav2vec2-1b-asm This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2854 - Wer: 0.8947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 14 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 4.6749 | 2.7027 | 200 | 0.3014 | 0.9074 | | 0.3157 | 5.4054 | 400 | 0.2934 | 0.9038 | | 0.2644 | 8.1081 | 600 | 0.2894 | 0.9147 | | 0.2264 | 10.8108 | 800 | 0.2865 | 0.9020 | | 0.1972 | 13.5135 | 1000 | 0.2854 | 0.8947 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1