--- license: apache-2.0 tags: - Composer - MosaicML - llm-foundry datasets: - the_pile_books3 inference: false --- [![banner](https://maddes8cht.github.io/assets/buttons/Huggingface-banner.jpg)]() I'm constantly enhancing these model descriptions to provide you with the most relevant and comprehensive information # mpt-7b-storywriter - GGUF - Model creator: [mosaicml](https://huggingface.co/mosaicml) - Original model: [mpt-7b-storywriter](https://huggingface.co/mosaicml/mpt-7b-storywriter) # Important Update for Falcon Models in llama.cpp Versions After October 18, 2023 As noted on the [Llama.cpp GitHub repository](https://github.com/ggerganov/llama.cpp#hot-topics), all new Llama.cpp releases after October 18, 2023, will require a re-quantization due to the new BPE tokenizer. **Good news!** I am glad that my re-quantization process for Falcon Models is nearly complete. Download the latest quantized models to ensure compatibility with recent llama.cpp software. **Key Points:** - **Stay Informed:** Keep an eye on software application release schedules using llama.cpp libraries. - **Monitor Upload Times:** Re-quantization is *almost* done. Watch for updates on my Hugging Face Model pages. **Important Compatibility Note:** Old software will work with old Falcon models, but expect updated software to exclusively support the new models. This change primarily affects **Falcon** and **Starcoder** models, with other models remaining unaffected. # About GGUF format `gguf` is the current file format used by the [`ggml`](https://github.com/ggerganov/ggml) library. A growing list of Software is using it and can therefore use this model. The core project making use of the ggml library is the [llama.cpp](https://github.com/ggerganov/llama.cpp) project by Georgi Gerganov # Quantization variants There is a bunch of quantized files available. How to choose the best for you: # Legacy quants Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are `legacy` quantization types. Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants. Falcon 7B models cannot be quantized to K-quants. # K-quants K-quants are based on the idea that the quantization of certain parts affects the quality in different ways. If you quantize certain parts more and others less, you get a more powerful model with the same file size, or a smaller file size and lower memory load with comparable performance. So, if possible, use K-quants. With a Q6_K you should find it really hard to find a quality difference to the original model - ask your model two times the same question and you may encounter bigger quality differences. --- # Original Model Card: # MPT-7B-StoryWriter-65k+ MPT-7B-StoryWriter-65k+ is a model designed to read and write fictional stories with super long context lengths. It was built by finetuning MPT-7B with a context length of 65k tokens on a filtered fiction subset of the [books3 dataset](https://huggingface.co/datasets/the_pile_books3). At inference time, thanks to [ALiBi](https://arxiv.org/abs/2108.12409), MPT-7B-StoryWriter-65k+ can extrapolate even beyond 65k tokens. We demonstrate generations as long as 84k tokens on a single node of 8 A100-80GB GPUs in our [blogpost](https://www.mosaicml.com/blog/mpt-7b). * License: Apache 2.0 This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture. ## Model Date May 5, 2023 ## Model License Apache 2.0 ## Documentation * [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b) * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/) * Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)! ## How to Use Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package. It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more. ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-7b-storywriter', trust_remote_code=True ) ``` To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision: ```python import torch import transformers name = 'mosaicml/mpt-7b-storywriter' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.attn_config['attn_impl'] = 'triton' config.init_device = 'cuda:0' # For fast initialization directly on GPU! model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, torch_dtype=torch.bfloat16, # Load model weights in bfloat16 trust_remote_code=True ) ``` Although the model was trained with a sequence length of 2048 and finetuned with a sequence length of 65536, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example: ```python import transformers name = 'mosaicml/mpt-7b' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.max_seq_len = 83968 # (input + output) tokens can now be up to 83968 model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, trust_remote_code=True ) ``` This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") ``` The model can then be used, for example, within a text-generation pipeline. Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html). ```python from transformers import pipeline pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0') with torch.autocast('cuda', dtype=torch.bfloat16): print( pipe('Here is a recipe for vegan banana bread:\n', max_new_tokens=100, do_sample=True, use_cache=True)) ``` ## Community-Created Resources These were not created by MosaicML, but you may find them useful. These links are not an endorsement of the creators or their content. - [Oobabooga Running MPT-7B-Storywriter](https://youtu.be/QVVb6Md6huA) - [NEW MPT-7B-StoryWriter CRUSHES GPT-4!](https://www.youtube.com/watch?v=O9Y_ZdsuKWQ&t=649s) - Has a long section on running locally using Oobabooga ## Example Epilogue The full text of the _The Great Gatsby_ (67873 tokens) was fed to the model, followed by the text "EPILOGUE" **TheRealFitzgerald233**: > ... > > So we beat on, boats against the current, borne back ceaselessly into the past > > EPILOGUE **MPT-7B-StoryWriter**: >I have lived so long in the shadow of this dream that I may never see the bright sunlight of reality. I may look up some morning and find that I am six feet under, and that Gatsby, who gave me the dream and everything else, will have vanished behind me. > >And so it was. I had hardly crossed the threshold of the old world when my eye caught the headlines of a newspaper, and I knew at once that my dream was over. I knew that Gatsby was dead. > >And I knew that day that I didn't love her. > >That night I took the last train for West Egg, and when I reached home I went directly to my attic and brought down all Gatsby's letters. > >I have sorted them by date and placed them in the order in which they were written. They are very few in number. > >They are dated between April of nineteen eighteen and January of nineteen nineteen, and the last one I have here is the one that told me he was dead. > >There is something in that last letter that frightens me. It is the sense of a finality, of a completeness. I never heard of him after that, and I was glad. > >But a few months ago I read somewhere that he had been seen in New York. He had become a great man. > >And I knew that he had not changed at all. ## Model Description The architecture is a modification of a standard decoder-only transformer. The model has been modified from a standard transformer in the following ways: * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings * It does not use biases | Hyperparameter | Value | |----------------|-------| |n_parameters | 6.7B | |n_layers | 32 | | n_heads | 32 | | d_model | 4096 | | vocab size | 50432 | | sequence length | **65536** | ## PreTraining Data For more details on the pretraining process, see [MPT-7B](https://huggingface.co/mosaicml/mpt-7b). The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ### Training Configuration This model was trained on 8 A100-80GBs for about 2 days using the [MosaicML Platform](https://www.mosaicml.com/platform). The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the [LION](https://arxiv.org/abs/2302.06675) optimizer. ## Limitations and Biases _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ MPT-7B-StoryWriter can produce factually incorrect output, and should not be relied on to produce factually accurate information. MPT-7B-StoryWriter was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ## Acknowledgements This model was finetuned by Alex Trott and the MosaicML NLP team ## MosaicML Platform If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b). ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. ## Citation Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs}, year = {2023}, url = {www.mosaicml.com/blog/mpt-7b}, note = {Accessed: 2023-03-28}, % change this date urldate = {2023-03-28} % change this date } ``` ***End of original Model File*** --- ## Please consider to support my work **Coming Soon:** I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community.
[![GitHub](https://maddes8cht.github.io/assets/buttons/github-io-button.png)](https://maddes8cht.github.io) [![Stack Exchange](https://stackexchange.com/users/flair/26485911.png)](https://stackexchange.com/users/26485911) [![GitHub](https://maddes8cht.github.io/assets/buttons/github-button.png)](https://github.com/maddes8cht) [![HuggingFace](https://maddes8cht.github.io/assets/buttons/huggingface-button.png)](https://huggingface.co/maddes8cht) [![Twitter](https://maddes8cht.github.io/assets/buttons/twitter-button.png)](https://twitter.com/maddes1966)