--- license: cc tags: - mergekit - merge base_model: - macadeliccc/MBX-7B-v3-DPO - mlabonne/OmniBeagle-7B model-index: - name: OmniCorso-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.7 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.7 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.91 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 73.43 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.74 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.96 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B name: Open LLM Leaderboard --- # OmniCorso-7B ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/PaG7ByWy1qnh_tcSuh35U.webp) ## Code Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("macadeliccc/OmniCorso-7B") model = AutoModelForCausalLM.from_pretrained("macadeliccc/OmniCorso-7B") messages = [ {"role": "system", "content": "Respond to the users request like a pirate"}, {"role": "user", "content": "Can you write me a quicksort algorithm?"} ] gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt") ``` The following models were included in the merge: * [macadeliccc/MBX-7B-v3-DPO](https://huggingface.co/macadeliccc/MBX-7B-v3-DPO) * [mlabonne/OmniBeagle-7B](https://huggingface.co/mlabonne/OmniBeagle-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: mlabonne/OmniBeagle-7B layer_range: [0, 32] - model: macadeliccc/MBX-7B-v3-DPO layer_range: [0, 32] merge_method: slerp base_model: macadeliccc/MBX-7B-v3-DPO parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## Quantizations ### GGUF + [iMatrix](https://huggingface.co/macadeliccc/OmniCorso-7B-GGUF) ### Exllamav2 Quants are available thanks to user bartowski, check them out [here](https://huggingface.co/bartowski/OmniCorso-7B-exl2) | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | | ----- | ---- | ------- | ------ | ------ | ------ | ------------ | | [8_0](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. | ## Evaluations
----Benchmark Complete----
2024-02-11 15:34:40
Time taken: 178.3 mins
Prompt Format: ChatML
Model: macadeliccc/OmniCorso-7B
Score (v2): 73.75
Parseable: 167.0
---------------
Batch completed
Time taken: 178.3 mins
---------------
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |---------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[OmniCorso-7B](https://huggingface.co/macadeliccc/OmniCorso-7B)| 45.89| 77.66| 74.12| 49.24| 61.73| ### AGIEval | Task |Version| Metric |Value| |Stderr| |------------------------------|------:|--------|----:|---|-----:| |agieval_aqua_rat | 0|acc |29.13|± | 2.86| | | |acc_norm|27.17|± | 2.80| |agieval_logiqa_en | 0|acc |39.32|± | 1.92| | | |acc_norm|39.63|± | 1.92| |agieval_lsat_ar | 0|acc |23.91|± | 2.82| | | |acc_norm|23.91|± | 2.82| |agieval_lsat_lr | 0|acc |53.14|± | 2.21| | | |acc_norm|53.92|± | 2.21| |agieval_lsat_rc | 0|acc |66.54|± | 2.88| | | |acc_norm|67.29|± | 2.87| |agieval_sat_en | 0|acc |80.58|± | 2.76| | | |acc_norm|80.58|± | 2.76| |agieval_sat_en_without_passage| 0|acc |45.63|± | 3.48| | | |acc_norm|43.69|± | 3.46| |agieval_sat_math | 0|acc |33.18|± | 3.18| | | |acc_norm|30.91|± | 3.12| Average: 45.89% ### GPT4All | Task |Version| Metric |Value| |Stderr| |-------------|------:|--------|----:|---|-----:| |arc_challenge| 0|acc |67.32|± | 1.37| | | |acc_norm|68.43|± | 1.36| |arc_easy | 0|acc |87.46|± | 0.68| | | |acc_norm|83.50|± | 0.76| |boolq | 1|acc |88.13|± | 0.57| |hellaswag | 0|acc |68.47|± | 0.46| | | |acc_norm|86.96|± | 0.34| |openbookqa | 0|acc |38.80|± | 2.18| | | |acc_norm|50.00|± | 2.24| |piqa | 0|acc |83.03|± | 0.88| | | |acc_norm|85.31|± | 0.83| |winogrande | 0|acc |81.29|± | 1.10| Average: 77.66% ### TruthfulQA | Task |Version|Metric|Value| |Stderr| |-------------|------:|------|----:|---|-----:| |truthfulqa_mc| 1|mc1 |58.26|± | 1.73| | | |mc2 |74.12|± | 1.43| Average: 74.12% ### Bigbench | Task |Version| Metric |Value| |Stderr| |------------------------------------------------|------:|---------------------|----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|56.84|± | 3.60| |bigbench_date_understanding | 0|multiple_choice_grade|63.41|± | 2.51| |bigbench_disambiguation_qa | 0|multiple_choice_grade|49.22|± | 3.12| |bigbench_geometric_shapes | 0|multiple_choice_grade|23.96|± | 2.26| | | |exact_str_match | 1.39|± | 0.62| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|34.20|± | 2.12| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|23.71|± | 1.61| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|60.33|± | 2.83| |bigbench_movie_recommendation | 0|multiple_choice_grade|49.00|± | 2.24| |bigbench_navigate | 0|multiple_choice_grade|55.20|± | 1.57| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|70.75|± | 1.02| |bigbench_ruin_names | 0|multiple_choice_grade|55.80|± | 2.35| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|36.97|± | 1.53| |bigbench_snarks | 0|multiple_choice_grade|72.38|± | 3.33| |bigbench_sports_understanding | 0|multiple_choice_grade|76.27|± | 1.36| |bigbench_temporal_sequences | 0|multiple_choice_grade|54.50|± | 1.58| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|23.12|± | 1.19| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|20.34|± | 0.96| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|60.33|± | 2.83| Average: 49.24% Average score: 61.73% Elapsed time: 02:20:06 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__OmniCorso-7B) | Metric |Value| |---------------------------------|----:| |Avg. |75.74| |AI2 Reasoning Challenge (25-Shot)|72.70| |HellaSwag (10-Shot) |88.70| |MMLU (5-Shot) |64.91| |TruthfulQA (0-shot) |73.43| |Winogrande (5-shot) |83.74| |GSM8k (5-shot) |70.96|