import torch from torch.nn import CrossEntropyLoss from transformers import AutoModel, PreTrainedModel from transformers.modeling_outputs import SequenceClassifierOutput from .configuration_roberta_emotion import RobertaEmotionConfig class RobertaEmotion(PreTrainedModel): config_class = RobertaEmotionConfig def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.backbone = AutoModel.from_pretrained("roberta-base", config) self.dropout = torch.nn.Dropout(p=0.1) self.output = torch.nn.Linear(config.hidden_size, config.num_labels) def forward(self, input_ids, labels=None, attention_mask=None): model_output = self.backbone(input_ids) hidden = model_output.last_hidden_state logits = self.output(self.dropout(hidden[:, 0, :])) loss = None if labels is not None: labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) return SequenceClassifierOutput(loss=loss, logits=logits)