--- license: mit base_model: prajjwal1/bert-tiny tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny_bert_28_hr_intents results: [] --- # tiny_bert_28_hr_intents This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4764 - Accuracy: 0.9314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 238 | 3.1723 | 0.1277 | | No log | 2.0 | 476 | 2.9582 | 0.3735 | | 3.1618 | 3.0 | 714 | 2.7791 | 0.4350 | | 3.1618 | 4.0 | 952 | 2.5973 | 0.4823 | | 2.7996 | 5.0 | 1190 | 2.4334 | 0.5012 | | 2.7996 | 6.0 | 1428 | 2.2703 | 0.5201 | | 2.4391 | 7.0 | 1666 | 2.1174 | 0.5721 | | 2.4391 | 8.0 | 1904 | 1.9785 | 0.6312 | | 2.116 | 9.0 | 2142 | 1.8518 | 0.6501 | | 2.116 | 10.0 | 2380 | 1.7367 | 0.6832 | | 1.8448 | 11.0 | 2618 | 1.6282 | 0.7139 | | 1.8448 | 12.0 | 2856 | 1.5288 | 0.7352 | | 1.6 | 13.0 | 3094 | 1.4400 | 0.7541 | | 1.6 | 14.0 | 3332 | 1.3565 | 0.7778 | | 1.411 | 15.0 | 3570 | 1.2838 | 0.7896 | | 1.411 | 16.0 | 3808 | 1.2116 | 0.8227 | | 1.2397 | 17.0 | 4046 | 1.1513 | 0.8227 | | 1.2397 | 18.0 | 4284 | 1.0895 | 0.8345 | | 1.1086 | 19.0 | 4522 | 1.0400 | 0.8416 | | 1.1086 | 20.0 | 4760 | 0.9865 | 0.8416 | | 1.1086 | 21.0 | 4998 | 0.9386 | 0.8487 | | 0.9884 | 22.0 | 5236 | 0.8953 | 0.8629 | | 0.9884 | 23.0 | 5474 | 0.8556 | 0.8652 | | 0.8911 | 24.0 | 5712 | 0.8223 | 0.8700 | | 0.8911 | 25.0 | 5950 | 0.7884 | 0.8771 | | 0.8159 | 26.0 | 6188 | 0.7545 | 0.8771 | | 0.8159 | 27.0 | 6426 | 0.7267 | 0.8842 | | 0.7358 | 28.0 | 6664 | 0.7005 | 0.8913 | | 0.7358 | 29.0 | 6902 | 0.6762 | 0.8983 | | 0.682 | 30.0 | 7140 | 0.6571 | 0.8960 | | 0.682 | 31.0 | 7378 | 0.6334 | 0.9007 | | 0.6252 | 32.0 | 7616 | 0.6134 | 0.9078 | | 0.6252 | 33.0 | 7854 | 0.5990 | 0.9054 | | 0.5864 | 34.0 | 8092 | 0.5827 | 0.9078 | | 0.5864 | 35.0 | 8330 | 0.5656 | 0.9149 | | 0.5579 | 36.0 | 8568 | 0.5542 | 0.9125 | | 0.5579 | 37.0 | 8806 | 0.5436 | 0.9125 | | 0.525 | 38.0 | 9044 | 0.5319 | 0.9173 | | 0.525 | 39.0 | 9282 | 0.5221 | 0.9220 | | 0.5001 | 40.0 | 9520 | 0.5143 | 0.9243 | | 0.5001 | 41.0 | 9758 | 0.5067 | 0.9220 | | 0.5001 | 42.0 | 9996 | 0.5007 | 0.9267 | | 0.4829 | 43.0 | 10234 | 0.4953 | 0.9267 | | 0.4829 | 44.0 | 10472 | 0.4897 | 0.9314 | | 0.4728 | 45.0 | 10710 | 0.4853 | 0.9314 | | 0.4728 | 46.0 | 10948 | 0.4832 | 0.9267 | | 0.4536 | 47.0 | 11186 | 0.4801 | 0.9291 | | 0.4536 | 48.0 | 11424 | 0.4777 | 0.9291 | | 0.4576 | 49.0 | 11662 | 0.4769 | 0.9291 | | 0.4576 | 50.0 | 11900 | 0.4764 | 0.9314 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3