--- license: apache-2.0 language: - en pipeline_tag: text-generation tags: - music - art ---
## MuPT: Symbolic Music Generative Pre-trained Transformer MuPT is a series of pre-trained models for symbolic music generation. It was trained on a large-scale dataset of symbolic music, including millions of monophonic and polyphonic pieces from different genres and styles. The models are trained with the LLama2 architecture, and can be further used for downstream music generation tasks such as melody generation, accompaniment generation, and multi-track music generation. - 29/01/2024: intermediate checkpoints of MuPT-v0-8192-1.3B model are released. - 09/01/2024: a series of pre-trained MuPT models are released, with parameters ranging from 110M to 1.3B. ## Intermediate Checkpoints We uploaded all the intermediate checkpoints of MuPT-v0-8192-1.3B model, which can be used for further research, continue training, and downstream tasks, etc. Available intermediate checkpoints are up to 23000 steps, with checkpoints every 1000 steps. Training parameters: | Name | Parameters | Batch Size | Tokens/Step | Max Learnging Rate |Seq Length | Hidden Size | Layers | Heads | | :--- | :---: | :---: | :---: | :---: | :---: | :---: |:---: | :---: | | MuPT-v0-8192-1.3B | 1.3B | 1024 | 8.4M | 3e-5 | 8192 | 1536 | 48 | 24 | ## Model architecture The details of model architecture of MuPT-v0 are listed below: | Name | Parameters | Training Data(Music Pieces) | Seq Length | Hidden Size | Layers | Heads | | :--- | :---: | :---: | :---: | :---: | :---: | :---: | | MuPT-v0-8192-110M | 110M | 7M x 10 epochs | 8192 | 768 | 12 | 12 | | MuPT-v0-8192-345M | 345M | 7M x 7.0 epochs | 8192 | 1024 | 24 | 16 | | MuPT-v0-8192-770M | 770M | 7M x 5.3 epochs | 8192 | 1280 | 36 | 20 | | MuPT-v0-8192-1.3B | 1.3B | 7M x 5.8 epochs | 8192 | 1536 | 48 | 24 | ## Weight Conversion The checkpoint we released is in [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) format, you can use the checkpoint directly in Megatron-LM for continue training or fine-tuning. We also provide a script to convert the checkpoints to Huggingface format: ```shell export PYTHONPATH=/path/to/megatron-lm HF_SAVE_ROOT=/path/to/save/huggingface/checkpoint ITER=023000 MEGATRON_PATH=/path/to/intermediate/checkpoint/iter_00${ITER} HF_SAVE_PATH=${HF_SAVE_ROOT}/MuPT-v0-1.3B-8192-iter${ITER} python convert_llama_megatron_hf.py \ --input-dir ${MEGATRON_PATH} \ --output-dir ${HF_SAVE_PATH} \ --vocab-size 50000 ``` ## Model Usage There are several ways to use our pre-trained MuPT models, we now the usage based on [Megatron-LM](https://github.com/NVIDIA/Megatron-LM/tree/main). Before starting, make sure you have setup the relevant environment and codebase. ```shell # pull Megatron-LM codebase mkdir -p /path/to/workspace && cd /path/to/workspace git clone https://github.com/NVIDIA/Megatron-LM.git # download the pre-trained MuPT models checkpoint and vocab files from Huggingface page mkdir -p /models/MuPT_v0_8192_1.3B && cd /models/MuPT_v0_8192_1.3B wget -O model_optim_rng.pt https://huggingface.co/m-a-p/MuPT_v0_8192_1.3B/resolve/main/model_optim_rng.pt?download=true wget -O newline.vocab https://huggingface.co/m-a-p/MuPT_v0_8192_1.3B/resolve/main/newline.vocab?download=true wget -O newline.txt https://huggingface.co/m-a-p/MuPT_v0_8192_1.3B/resolve/main/newline.txt?download=true ``` We recommend using the latest version of [NGC's PyTorch container](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch) for MuPT inference. See more details in [Megatron-LM](https://github.com/NVIDIA/Megatron-LM/tree/main) ```shell # pull the latest NGC's PyTorch container, mount the workspace directory and enter the container docker run --gpus all -it --name megatron --shm-size=16g -v $PWD:/workspace -p 5000:5000 nvcr.io/nvidia/pytorch:23.11-py3 /bin/bash ``` Once you enter the container, you can start a REST server for inference.
Click to expand the example script #!/bin/bash # This example will start serving the 1.3B model. export CUDA_DEVICE_MAX_CONNECTIONS=1 DISTRIBUTED_ARGS="--nproc_per_node 1 \ --nnodes 1 \ --node_rank 0 \ --master_addr localhost \ --master_port 6000" CHECKPOINT=/path/to/model/checkpoint/folder VOCAB_FILE=/path/to/vocab/file MERGE_FILE=/path/to/merge/file MODEL_SIZE="1.3B" if [[ ${MODEL_SIZE} == "110M" ]]; then HIDDEN_SIZE=768; NUM_HEAD=12; NUM_QUERY_GROUP=12; NUM_LAYERS=12; FFN_HIDDEN_SIZE=3072; NORM_EPS=1e-5; elif [[ ${MODEL_SIZE} == "345M" ]]; then HIDDEN_SIZE=1024; NUM_HEAD=16; NUM_QUERY_GROUP=16; NUM_LAYERS=24; FFN_HIDDEN_SIZE=4096; NORM_EPS=1e-5; elif [[ ${MODEL_SIZE} == "770M" ]]; then HIDDEN_SIZE=1280; NUM_HEAD=20; NUM_QUERY_GROUP=20; NUM_LAYERS=36; FFN_HIDDEN_SIZE=5120; NORM_EPS=1e-5; elif [[ ${MODEL_SIZE} == "1.3B" ]]; then HIDDEN_SIZE=1536; NUM_HEAD=24; NUM_QUERY_GROUP=24; NUM_LAYERS=48; FFN_HIDDEN_SIZE=6144; NORM_EPS=1e-5; else echo "invalid MODEL_SIZE: ${MODEL_SIZE}"; exit 1 fi MAX_SEQ_LEN=8192 MAX_POSITION_EMBEDDINGS=8192 pip install flask-restful torchrun $DISTRIBUTED_ARGS tools/run_text_generation_server.py \ --tensor-model-parallel-size 1 \ --pipeline-model-parallel-size 1 \ --num-layers ${NUM_LAYERS} \ --hidden-size ${HIDDEN_SIZE} \ --ffn-hidden-size ${FFN_HIDDEN_SIZE} \ --load ${CHECKPOINT} \ --group-query-attention \ --num-query-groups ${NUM_QUERY_GROUP} \ --position-embedding-type rope \ --num-attention-heads ${NUM_HEAD} \ --max-position-embeddings ${MAX_POSITION_EMBEDDINGS} \ --tokenizer-type GPT2BPETokenizer \ --normalization RMSNorm \ --norm-epsilon ${NORM_EPS} \ --make-vocab-size-divisible-by 1 \ --swiglu \ --use-flash-attn \ --bf16 \ --micro-batch-size 1 \ --disable-bias-linear \ --no-bias-gelu-fusion \ --untie-embeddings-and-output-weights \ --seq-length ${MAX_SEQ_LEN} \ --vocab-file $VOCAB_FILE \ --merge-file $MERGE_FILE \ --attention-dropout 0.0 \ --hidden-dropout 0.0 \ --weight-decay 1e-1 \ --clip-grad 1.0 \ --adam-beta1 0.9 \ --adam-beta2 0.95 \ --adam-eps 1e-8 \ --seed 42
Use CURL to query the server directly, note that the newline token `\n` is represented by `` in the vocabulary, so we need to replace the newline token with `` in both the prompt and the generated tokens. ```shell curl 'http://localhost:6000/api' -X 'PUT' -H 'Content-Type: application/json; charset=UTF-8' -d '{"prompts":["X:1L:1/8Q:1/8=200M:4/4K:Gmin|:\"Gm\" BGdB"], "tokens_to_generate":4096}' ``` Processed Output: ```shell X:1 L:1/8 Q:1/8=200 M:4/4K:Gmin |:\"Gm\" BGdB fdBG |\"F\" AFcF dFcF |\"Gm\" BGdG gFBF |\"F\" AFAG AF F2 |\"Gm\" BGBd fffd |\"F\" cdcB cdeg | \"Gm\" fdcB\"Eb\" AFcA |1 BGFG\"F\" AFGc :|2 BGFG\"F\" AF F2 || ``` Once you encode the generated tokens into audio, you will hear the following music.