""" MERT model definition. We largely adapt codes from: 1. https://github.com/huggingface/transformers/blob/main/src/transformers/models/hubert/modeling_hubert.py 2. https://github.com/facebookresearch/fairseq/blob/main/fairseq/models/wav2vec/wav2vec2.py """ from typing import Optional, Tuple, Union from transformers.modeling_outputs import BaseModelOutput import torch from torch import nn from transformers.models.hubert.modeling_hubert import ( HubertFeatureEncoder, HubertModel, HubertEncoderStableLayerNorm, HubertEncoder, HubertEncoderLayer, HubertPositionalConvEmbedding, HubertAttention, HubertFeedForward, ) try: from nnAudio import features as nnAudioFeatures NNAUDIO_INSTALLED=True except: print("WARNING: feature_extractor_cqt requires the libray 'nnAudio'") NNAUDIO_INSTALLED=False from .configuration_MERT import MERTConfig class MERTFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.feat_proj_layer_norm = config.feat_proj_layer_norm self.feature_extractor_cqt = config.feature_extractor_cqt if self.feature_extractor_cqt: # v3 concat features self.feature_dimension = config.conv_dim[-1] + config.feature_extractor_cqt_bins print(f"feature dimention: {self.feature_dimension}") else: self.feature_dimension = config.conv_dim[-1] if self.feat_proj_layer_norm: self.layer_norm = nn.LayerNorm(self.feature_dimension, eps=config.layer_norm_eps) self.projection = nn.Linear(self.feature_dimension, config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization if self.feat_proj_layer_norm: hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class MERTModel(HubertModel): # overwrite config class config_class = MERTConfig base_model_prefix = "mert_model" def __init__( self, config: MERTConfig, ) -> None: """ initialize the with the grandparent method HubertPreTrainedModel.__init__() and modify the HuBERTModel.__init__() """ super(HubertModel, self).__init__(config) self.config = config self.feature_extractor = HubertFeatureEncoder(config) self.feature_projection = MERTFeatureProjection(config) # replace Feature Projection for introcuing new feature if self.config.feature_extractor_cqt: assert NNAUDIO_INSTALLED, "ERROR: feature_extractor_cqt requires the libray 'nnAudio', try after `pip install nnAudio` " print('initializing cqt extractor for MERT') self.feature_extractor_cqt = nnAudioFeatures.cqt.CQT(sr=self.config.sample_rate, hop_length=self.config.sample_rate//50, fmin=32.7, fmax=None, n_bins=self.config.feature_extractor_cqt_bins, bins_per_octave=self.config.feature_extractor_cqt_bins//7, filter_scale=1, norm=1, window='hann', center=True, pad_mode='constant', trainable=False, output_format='Magnitude', verbose=True) if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) if config.do_stable_layer_norm: assert not config.deepnorm, "must use post-layer_norm with deepnorm" self.encoder = HubertEncoderStableLayerNorm(config) else: if config.deepnorm: self.encoder = HubertEncoder_extend(config) else: self.encoder = HubertEncoder(config) # Initialize weights and apply final processing self.post_init() def forward(self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None) -> Union[Tuple, BaseModelOutput]: # return super().forward(input_values, attention_mask, mask_time_indices, output_attentions, output_hidden_states, return_dict) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) # add additional cqt features for transformer input if self.config.feature_extractor_cqt: features_cqt = self.feature_extractor_cqt(input_values).transpose(1, 2) features_cqt = features_cqt[:,:extract_features.shape[1],:] # align shape # # v2 # features_cqt = self.post_cqt_feature_proj(features_cqt) # extract_features = self.feature_projection.layer_norm(extract_features) + self.feature_projection.layer_norm(features_cqt) #v2 # v3 extract_features = torch.cat([extract_features,features_cqt], 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask) hidden_states = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] # take last_hidden from encoder output if not return_dict: return (hidden_states,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class HubertEncoder_extend(HubertEncoder): def __init__(self, config): # super().__init__() # call nn module initialization nn.Module.__init__(self) # super(HubertEncoder_extend, self).__init__() self.config = config self.pos_conv_embed = HubertPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([HubertEncoderLayerExtend(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False if config.deepnorm: import math init_scale = math.pow(8.0 * config.num_hidden_layers, 0.25) for name, p in self.named_parameters(): if ( "feed_forward.intermediate_dense" in name or "feed_forward.output_dense" in name or "out_proj" in name or "v_proj" in name ): p.data.div_(init_scale) class HubertEncoderLayerExtend(HubertEncoderLayer): def __init__(self, config): nn.Module.__init__(self) # super(HubertEncoderLayerExtend, self).__init__() if config.attention_relax > 0 : self.attention = HubertAttention_extend( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, attention_relax=config.attention_relax, ) else: self.attention = HubertAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = HubertFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.deepnorm: import math self.residual_alpha = math.pow(2.0 * config.num_hidden_layers, 0.25) else: self.residual_alpha = 1.0 def residual_connection(self, x, residual): ''' residual: input before f() x: output of f(residual) ''' return residual * self.residual_alpha + x def forward(self, hidden_states, attention_mask=None, output_attentions=False): attn_residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) # hidden_states = attn_residual + hidden_states hidden_states = self.residual_connection(hidden_states, attn_residual) hidden_states = self.layer_norm(hidden_states) # hidden_states = hidden_states + self.feed_forward(hidden_states) ffn_residual = hidden_states hidden_states = self.feed_forward(hidden_states) hidden_states = self.residual_connection(hidden_states, ffn_residual) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class HubertAttention_extend(nn.Module): def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, attention_relax: float = -1.0, ): super().__init__() # nn.Module.__init__(self) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) if attention_relax > 0: self.attention_relax = attention_relax def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if self.attention_relax > 0: # => (bsz, self.num_heads, tgt_len, src_len) # attn_weights_relax = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)/self.attention_relax # => (bsz*self.num_heads, tgt_len, src_len) attn_weights_relax = attn_weights / self.attention_relax # => (bsz* self.num_heads, tgt_len, 1) attn_max_relax = torch.max(attn_weights_relax, dim=-1, keepdim=False).unsqueeze(2) attn_weights = (attn_weights_relax - attn_max_relax) * self.attention_relax attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned aross GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value