--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer datasets: - reuters21578 metrics: - f1 - accuracy model-index: - name: distilbert-finetuned-reuters21578-multilabel results: - task: name: Text Classification type: text-classification dataset: name: reuters21578 type: reuters21578 config: ModApte split: test args: ModApte metrics: - name: F1 type: f1 value: 0.8628858578607322 - name: Accuracy type: accuracy value: 0.8195625759416768 --- # distilbert-finetuned-reuters21578-multilabel This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the reuters21578 dataset. It achieves the following results on the evaluation set: - Loss: 0.0110 - F1: 0.8629 - Roc Auc: 0.9063 - Accuracy: 0.8196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.1801 | 1.0 | 300 | 0.0439 | 0.3896 | 0.6210 | 0.3566 | | 0.0345 | 2.0 | 600 | 0.0287 | 0.6289 | 0.7318 | 0.5954 | | 0.0243 | 3.0 | 900 | 0.0219 | 0.6721 | 0.7579 | 0.6084 | | 0.0178 | 4.0 | 1200 | 0.0177 | 0.7505 | 0.8128 | 0.6908 | | 0.014 | 5.0 | 1500 | 0.0151 | 0.7905 | 0.8376 | 0.7278 | | 0.0115 | 6.0 | 1800 | 0.0135 | 0.8132 | 0.8589 | 0.7555 | | 0.0096 | 7.0 | 2100 | 0.0124 | 0.8291 | 0.8727 | 0.7725 | | 0.0082 | 8.0 | 2400 | 0.0124 | 0.8335 | 0.8757 | 0.7822 | | 0.0071 | 9.0 | 2700 | 0.0119 | 0.8392 | 0.8847 | 0.7883 | | 0.0064 | 10.0 | 3000 | 0.0123 | 0.8339 | 0.8810 | 0.7828 | | 0.0058 | 11.0 | 3300 | 0.0114 | 0.8538 | 0.8999 | 0.8047 | | 0.0053 | 12.0 | 3600 | 0.0113 | 0.8525 | 0.8967 | 0.8044 | | 0.0048 | 13.0 | 3900 | 0.0115 | 0.8520 | 0.8982 | 0.8029 | | 0.0045 | 14.0 | 4200 | 0.0111 | 0.8566 | 0.8962 | 0.8104 | | 0.0042 | 15.0 | 4500 | 0.0110 | 0.8610 | 0.9060 | 0.8165 | | 0.0039 | 16.0 | 4800 | 0.0112 | 0.8583 | 0.9021 | 0.8138 | | 0.0037 | 17.0 | 5100 | 0.0110 | 0.8620 | 0.9055 | 0.8196 | | 0.0035 | 18.0 | 5400 | 0.0110 | 0.8629 | 0.9063 | 0.8196 | | 0.0035 | 19.0 | 5700 | 0.0111 | 0.8624 | 0.9062 | 0.8180 | | 0.0034 | 20.0 | 6000 | 0.0111 | 0.8626 | 0.9055 | 0.8177 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3