--- license: mit --- ## Model Summary `phi-2-tool-use` is fine-tuned version of Phi-2 for function calling purposes. The model was fine-tuned on the public function call dataset [`glaiveai/glaive-function-calling-v2`](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2). The purpose of the experiment is to understand the quality of the pre-trained Phi-2 model. `phi-2-tool-use` can generalize to call simple tools/functions not seen during fine-tuning. ## Decoding Format your prompt as ``` """SYSTEM: {system_content}\n\nUSER: {user_content} {eos_token} ASSISTANT:""" ``` where `system_content` is the system message containing a description of the tool/function as a json schema, `user_content` is the user message, and `eos_token` is the EOS token. The model can handle multi-turn dialogue as it was trained on such data. Here's a full-fledged example: ``` import torch import transformers model_name_or_path = "lxuechen/phi-2-tool-use" model: transformers.PreTrainedModel = transformers.AutoModelForCausalLM.from_pretrained( model_name_or_path, low_cpu_mem_usage=True, device_map="auto", trust_remote_code=True, torch_dtype=torch.float16 ) tokenizer = transformers.AutoTokenizer.from_pretrained(model_name_or_path) input_text = """SYSTEM: You are a helpful assistant with access to the following functions. Use them if required - { "name": "get_exchange_rate", "description": "Get the exchange rate between two currencies", "parameters": { "type": "object", "properties": { "base_currency": { "type": "string", "description": "The currency to convert from" }, "target_currency": { "type": "string", "description": "The currency to convert to" } }, "required": [ "base_currency", "target_currency" ] } }\n\nUSER: Convert 100 USD to CAD <|endoftext|> ASSISTANT:""" outputs = model.generate( tokenizer(input_text, return_tensors="pt").to(model.device)['input_ids'], max_length=1024, temperature=0.7, top_p=0.9, do_sample=True, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Training The model was fine-tuned with SFT on [`glaiveai/glaive-function-calling-v2`](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2). Hyperparameters: - learning rate: 3% linear warmup, with a peak of 2e-5 and cosine decay - epochs: 2 - batch size: 64 - context length: 2048