--- base_model: NousResearch/Llama-2-7b-chat-hf library_name: peft tags: - trl - sft - generated_from_trainer model-index: - name: llama2-7B-finetuned-chat-guanaco results: [] license: mit datasets: - mlabonne/guanaco-llama2-1k pipeline_tag: text2text-generation --- ## Model description The __`llama2-7B-finetuned-chat-guanaco`__ model is a fine-tuned version of the [NousResearch/Llama-2-7b-chat-hf](https://huggingface.co/NousResearch/Llama-2-7b-chat-hf) base model. This base model is a variant of LLaMA (Large Language Model Meta AI) designed for chat applications, optimized for conversational understanding and generation. ## Dataset used [mlabonne/guanaco-llama2-1k](https://huggingface.co/mlabonne/guanaco-llama2-1k) ## Intended uses & limitations More information needed ### Training results The training loss over steps is as follows: | Step | Training Loss | |------|---------------| | 25 | 1.823 | | 50 | 2.056 | | 75 | 1.829 | | 100 | 1.744 | | 125 | 1.717 | | 150 | 1.412 | | 175 | 1.506 | | 200 | 1.446 | | 225 | 1.499 | | 250 | 1.432 | | 275 | 1.281 | | 300 | 1.341 | | 325 | 1.345 | | 350 | 1.391 | | 375 | 1.388 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - PEFT 0.12.0 - Transformers 4.43.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1