--- library_name: transformers language: - en license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sentiment results: [] --- # distilbert-base-uncased-finetuned-sentiment This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb-dataset-of-50k-movie-reviews dataset. It achieves the following results on the evaluation set: - Loss: 0.2047 - Accuracy: 0.9293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3001 | 1.0 | 1250 | 0.2115 | 0.9198 | | 0.1616 | 2.0 | 2500 | 0.2047 | 0.9293 | | 0.0968 | 3.0 | 3750 | 0.2511 | 0.9293 | | 0.0558 | 4.0 | 5000 | 0.3152 | 0.928 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3