--- library_name: transformers language: - np base_model: RoBERTa tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: RoBERTa-devangari-script-classification results: [] --- # RoBERTa-devangari-script-classification This model is a fine-tuned version of [RoBERTa](https://huggingface.co/RoBERTa) on the Custom Devangari Datasets dataset. It achieves the following results on the evaluation set: - Loss: 0.0329 - Accuracy: 0.9935 - F1: 0.9935 - Precision: 0.9935 - Recall: 0.9935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2337 | 0.9997 | 1638 | 0.0603 | 0.9874 | 0.9874 | 0.9875 | 0.9874 | | 0.0513 | 2.0 | 3277 | 0.0387 | 0.9919 | 0.9919 | 0.9919 | 0.9919 | | 0.0252 | 2.9991 | 4914 | 0.0329 | 0.9935 | 0.9935 | 0.9935 | 0.9935 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1