luluw's picture
End of training
e75506c verified
|
raw
history blame
1.9 kB
metadata
library_name: transformers
language:
  - np
base_model: RoBERTa
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: RoBERTa-devangari-script-classification
    results: []

RoBERTa-devangari-script-classification

This model is a fine-tuned version of RoBERTa on the Custom Devangari Datasets dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0329
  • Accuracy: 0.9935
  • F1: 0.9935
  • Precision: 0.9935
  • Recall: 0.9935

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2337 0.9997 1638 0.0603 0.9874 0.9874 0.9875 0.9874
0.0513 2.0 3277 0.0387 0.9919 0.9919 0.9919 0.9919
0.0252 2.9991 4914 0.0329 0.9935 0.9935 0.9935 0.9935

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1