File size: 6,203 Bytes
69b50b5 1ee84c1 d928e95 69b50b5 3e32a47 826993c 3e32a47 826993c 3e32a47 826993c 507ecfa 418993e 507ecfa a4a7ea7 1b3e534 a4a7ea7 c2283c6 da6a930 d0ea5fc 465fcea 1b3e534 f16450c 465fcea 2bbd84e 465fcea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
---
task_categories:
- object-detection
tags:
- safety
- yolo
- yolo11
datasets:
- luisarizmendi/safety-equipment
base_model:
- Ultralytics/YOLO11
widget:
- src: >-
https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
example_title: Football Match
- src: >-
https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
example_title: Airport
pipeline_tag: object-detection
model-index:
- name: yolo11-safety-equipment
results:
- task:
type: object-detection
dataset:
type: safety-equipment
name: Safety Equipment
args:
epochs: 35
batch: 2
imgsz: 640
patience: 5
optimizer: 'SGD'
lr0: 0.001
lrf: 0.01
momentum: 0.9
weight_decay: 0.0005
warmup_epochs: 3
warmup_bias_lr: 0.01
warmup_momentum: 0.8
metrics:
- type: precision # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0.99
name: Precision
- type: recall
value: 0.99
name: Recall
- type: mAP50
value: 0.99
name: mAP50
- type: mAP50-95
value: 0.99
name: mAP50-95
# config: {metric_config} # Optional. The name of the metric configuration used in `load_metric()`. Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
# args:
# {arg_0}: {value_0} # Optional. The arguments passed during `Metric.compute()`. Example for `bleu`: max_order: 4
# verifyToken: {verify_token} # Optional. If present, this is a signature that can be used to prove that evaluation was generated by Hugging Face (vs. self-reported).
# source: # Optional. The source for this result.
# name: {source_name} # Optional. The name of the source. Example: Open LLM Leaderboard.
# url: {source_url} # Required if source is provided. A link to the source. Example: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard.
---
# Model for safety-equipment detection
<div align="center">
<img width="640" alt="luisarizmendi/safety-equipment" src="https://huggingface.co/luisarizmendi/yolo11-safety-equipment/resolve/main/example.png">
</div>
## Model binary
Since with my Huggingface account I cannot push files greater than 10Mb, [you can download the model from here](https://github.com/luisarizmendi/ai-apps/raw/refs/heads/main/models/luisarizmendi/safety-hat/safety-hat-v1.pt)
## Labels
```
- glove
- goggles
- helmet
- mask
- no_glove
- no_goggles
- no_helmet
- no_mask
- no_shoes
- shoes
```
## Dataset
[https://universe.roboflow.com/luisarizmendi/safety-or-hat/dataset/1](https://universe.roboflow.com/personal-protective-equipment/ppes-kaxsi)
This dataset is based on [this other one that you can find in Roboflow](https://universe.roboflow.com/luisarizmendi/safety-or-hat/dataset/1?ref=roboflow2huggingface)
## Hyperparameters
```
epochs: 35
batch: 2
imgsz: 640
patience: 5
optimizer: 'SGD'
lr0: 0.001
lrf: 0.01
momentum: 0.9
weight_decay: 0.0005
warmup_epochs: 3
warmup_bias_lr: 0.01
warmup_momentum: 0.8
```
## Augmentation
```
hsv_h=0.015, # Image HSV-Hue augmentationc
hsv_s=0.7, # Image HSV-Saturation augmentation
hsv_v=0.4, # Image HSV-Value augmentation
degrees=10, # Image rotation (+/- deg)
translate=0.1, # Image translation (+/- fraction)
scale=0.3, # Image scale (+/- gain)
shear=0.0, # Image shear (+/- deg)
perspective=0.0, # Image perspective
flipud=0.1, # Image flip up-down
fliplr=0.1, # Image flip left-right
mosaic=1.0, # Image mosaic
mixup=0.0, # Image mixup
```
## Usage
Install the following PIP requirements
```
gradio
ultralytics
Pillow
opencv-python
torch
```
Then run this python code:
```
import gradio as gr
from ultralytics import YOLO
from PIL import Image
import os
import cv2
import torch
def detect_objects_in_files(files):
"""
Processes uploaded images for object detection.
"""
if not files:
return "No files uploaded.", []
device = "cuda" if torch.cuda.is_available() else "cpu"
model = YOLO("https://github.com/luisarizmendi/ai-apps/raw/refs/heads/main/models/luisarizmendi/safety-hat/safety-hat-v1.pt")
model.to(device)
results_images = []
for file in files:
try:
image = Image.open(file).convert("RGB")
results = model(image)
result_img_bgr = results[0].plot()
result_img_rgb = cv2.cvtColor(result_img_bgr, cv2.COLOR_BGR2RGB)
results_images.append(result_img_rgb)
# If you want that images appear one by one (slower)
#yield "Processing image...", results_images
except Exception as e:
return f"Error processing file: {file}. Exception: {str(e)}", []
del model
torch.cuda.empty_cache()
return "Processing completed.", results_images
interface = gr.Interface(
fn=detect_objects_in_files,
inputs=gr.Files(file_types=["image"], label="Select Images"),
outputs=[
gr.Textbox(label="Status"),
gr.Gallery(label="Results")
],
title="Object Detection on Images",
description="Upload images to perform object detection. The model will process each image and display the results."
)
if __name__ == "__main__":
interface.launch()
```
Finally open `http://localhost:7860` in a browser and upload the images to scan.
## Usage with Huggingface spaces
If you don't want to run it locally, you can use [this huggingface space](https://huggingface.co/spaces/luisarizmendi/safety-equipment-object-detection) that I've created with this code but be aware that this will be slow since I'm using a free instance.
<div align="center">
<img width="640" alt="luisarizmendi/safety-equipment" src="https://huggingface.co/luisarizmendi/yolo11-safety-equipment/resolve/main/spaces-example.png">
</div>
|