File size: 6,203 Bytes
69b50b5
1ee84c1
 
 
d928e95
 
 
69b50b5
 
 
 
3e32a47
826993c
 
3e32a47
826993c
 
3e32a47
826993c
507ecfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
418993e
507ecfa
 
 
 
 
 
 
 
a4a7ea7
 
 
 
 
 
 
 
 
1b3e534
 
 
 
 
 
a4a7ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2283c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da6a930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0ea5fc
465fcea
 
1b3e534
 
f16450c
465fcea
 
2bbd84e
 
 
 
465fcea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
---
task_categories:
- object-detection
tags:
- safety
- yolo
- yolo11
datasets:
- luisarizmendi/safety-equipment
base_model:
- Ultralytics/YOLO11
widget:
- src: >-
    https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
  example_title: Football Match
- src: >-
    https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
  example_title: Airport
pipeline_tag: object-detection
model-index:
- name: yolo11-safety-equipment 
  results:
  - task:
      type: object-detection        
    dataset:
      type: safety-equipment          
      name: Safety Equipment          
      args:
        epochs: 35
        batch: 2
        imgsz: 640
        patience: 5
        optimizer: 'SGD'
        lr0: 0.001
        lrf: 0.01
        momentum: 0.9
        weight_decay: 0.0005
        warmup_epochs: 3
        warmup_bias_lr: 0.01
        warmup_momentum: 0.8
    metrics:
      - type: precision         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: 0.99       
        name: Precision
      - type: recall         
        value: 0.99       
        name: Recall
      - type: mAP50         
        value: 0.99       
        name: mAP50
      - type: mAP50-95         
        value: 0.99       
        name: mAP50-95  
#        config: {metric_config}     # Optional. The name of the metric configuration used in `load_metric()`. Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
#        args:
#          {arg_0}: {value_0}        # Optional. The arguments passed during `Metric.compute()`. Example for `bleu`: max_order: 4
#        verifyToken: {verify_token} # Optional. If present, this is a signature that can be used to prove that evaluation was generated by Hugging Face (vs. self-reported).
#    source:                         # Optional. The source for this result.
#      name: {source_name}           # Optional. The name of the source. Example: Open LLM Leaderboard.
#      url: {source_url}             # Required if source is provided. A link to the source. Example: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard.

---

# Model for safety-equipment detection


<div align="center">
  <img width="640" alt="luisarizmendi/safety-equipment" src="https://huggingface.co/luisarizmendi/yolo11-safety-equipment/resolve/main/example.png">
</div>


## Model binary

Since with my Huggingface account I cannot push files greater than 10Mb, [you can download the model from here](https://github.com/luisarizmendi/ai-apps/raw/refs/heads/main/models/luisarizmendi/safety-hat/safety-hat-v1.pt)


## Labels

```
- glove
- goggles
- helmet
- mask
- no_glove
- no_goggles
- no_helmet
- no_mask
- no_shoes
- shoes
```

## Dataset

[https://universe.roboflow.com/luisarizmendi/safety-or-hat/dataset/1](https://universe.roboflow.com/personal-protective-equipment/ppes-kaxsi)

This dataset is based on [this other one that you can find in Roboflow](https://universe.roboflow.com/luisarizmendi/safety-or-hat/dataset/1?ref=roboflow2huggingface)


## Hyperparameters

```
epochs: 35
batch: 2
imgsz: 640
patience: 5
optimizer: 'SGD'
lr0: 0.001
lrf: 0.01
momentum: 0.9
weight_decay: 0.0005
warmup_epochs: 3
warmup_bias_lr: 0.01
warmup_momentum: 0.8
```

## Augmentation

```
hsv_h=0.015,  # Image HSV-Hue augmentationc
hsv_s=0.7,   # Image HSV-Saturation augmentation
hsv_v=0.4,   # Image HSV-Value augmentation
degrees=10,  # Image rotation (+/- deg)
translate=0.1,  # Image translation (+/- fraction)
scale=0.3,   # Image scale (+/- gain)
shear=0.0,   # Image shear (+/- deg)
perspective=0.0,  # Image perspective
flipud=0.1,  # Image flip up-down
fliplr=0.1,  # Image flip left-right
mosaic=1.0,  # Image mosaic
mixup=0.0,   # Image mixup
```


## Usage

Install the following PIP requirements

```
gradio
ultralytics
Pillow
opencv-python
torch
```

Then run this python code:

```
import gradio as gr
from ultralytics import YOLO
from PIL import Image
import os
import cv2 
import torch 

def detect_objects_in_files(files):
    """
    Processes uploaded images for object detection.
    """
    if not files:
        return "No files uploaded.", []

    device = "cuda" if torch.cuda.is_available() else "cpu"  
    model = YOLO("https://github.com/luisarizmendi/ai-apps/raw/refs/heads/main/models/luisarizmendi/safety-hat/safety-hat-v1.pt")
    model.to(device)
    
    results_images = []
    for file in files:
        try:
            image = Image.open(file).convert("RGB")
            results = model(image) 
            result_img_bgr = results[0].plot()
            result_img_rgb = cv2.cvtColor(result_img_bgr, cv2.COLOR_BGR2RGB)
            results_images.append(result_img_rgb)   
         
            # If you want that images appear one by one (slower)
            #yield "Processing image...", results_images  
                
        except Exception as e:
            return f"Error processing file: {file}. Exception: {str(e)}", []

    del model  
    torch.cuda.empty_cache()
    
    return "Processing completed.", results_images

interface = gr.Interface(
    fn=detect_objects_in_files,
    inputs=gr.Files(file_types=["image"], label="Select Images"),
    outputs=[
        gr.Textbox(label="Status"),
        gr.Gallery(label="Results")
    ],
    title="Object Detection on Images",
    description="Upload images to perform object detection. The model will process each image and display the results."
)

if __name__ == "__main__":
    interface.launch()
```

Finally open `http://localhost:7860` in a browser and upload the images to scan.


## Usage with Huggingface spaces

If you don't want to run it locally, you can use [this huggingface space](https://huggingface.co/spaces/luisarizmendi/safety-equipment-object-detection) that I've created with this code but be aware that this will be slow since I'm using a free instance.


<div align="center">
  <img width="640" alt="luisarizmendi/safety-equipment" src="https://huggingface.co/luisarizmendi/yolo11-safety-equipment/resolve/main/spaces-example.png">
</div>