#!/usr/bin/env python3 import argparse import functools import re import string import unidecode from typing import Dict from datasets import Audio, Dataset, DatasetDict, load_dataset, load_metric from transformers import AutoFeatureExtractor, AutoTokenizer, pipeline def log_results(result: Dataset, args: Dict[str, str]): """DO NOT CHANGE. This function computes and logs the result metrics.""" log_outputs = args.log_outputs dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) # load metric wer = load_metric("wer") cer = load_metric("cer") # compute metrics wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) # print & log results result_str = f"WER: {wer_result}\n" f"CER: {cer_result}" print(result_str) with open(f"{dataset_id}_eval_results.txt", "w") as f: f.write(result_str) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: pred_file = f"log_{dataset_id}_predictions.txt" target_file = f"log_{dataset_id}_targets.txt" with open(pred_file, "w") as p, open(target_file, "w") as t: # mapping function to write output def write_to_file(batch, i): p.write(f"{i}" + "\n") p.write(batch["prediction"] + "\n") t.write(f"{i}" + "\n") t.write(batch["target"] + "\n") result.map(write_to_file, with_indices=True) def normalize_text(text: str) -> str: """DO ADAPT FOR YOUR USE CASE. this function normalizes the target text.""" chars_to_ignore_regex = f'[{re.escape(string.punctuation)}]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training text = re.sub( chars_to_ignore_regex, "", re.sub("['`´]", "’", # elsewhere probably meant as glottal stop re.sub("([og])['`´]", "\g<1>‘", # after o/g indicate modified char unidecode.unidecode(text).lower() ) ) ) + " " # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! token_sequences_to_ignore = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: text = " ".join(text.split(t)) return text def create_vocabulary_from_data( datasets: DatasetDict, word_delimiter_token = None, unk_token = None, pad_token = None, ): # Given training and test labels create vocabulary def extract_all_chars(batch): all_text = " ".join(batch["target"]) vocab = list(set(all_text)) return {"vocab": [vocab], "all_text": [all_text]} vocabs = datasets.map( extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=datasets["test"].column_names, ) vocab_dict = {v: k for k, v in enumerate(sorted(vocabs["test"]["vocab"][0]))} # replace white space with delimiter token if word_delimiter_token is not None: vocab_dict[word_delimiter_token] = vocab_dict[" "] del vocab_dict[" "] # add unk and pad token if unk_token is not None: vocab_dict[unk_token] = len(vocab_dict) if pad_token is not None: vocab_dict[pad_token] = len(vocab_dict) return vocab_dict def main(args): # load dataset dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id) sampling_rate = feature_extractor.sampling_rate # resample audio dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) # load eval pipeline asr = pipeline("automatic-speech-recognition", model=args.model_id) # map function to decode audio def map_to_pred(batch): prediction = asr( batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s ) batch["prediction"] = prediction["text"] batch["target"] = normalize_text(batch["sentence"]) return batch # run inference on all examples result = dataset.map(map_to_pred, remove_columns=dataset.column_names) # compute and log_results # do not change function below log_results(result, args) if args.check_vocab: tokenizer = AutoTokenizer.from_pretrained(args.model_id) unk_token = "[UNK]" pad_token = "[PAD]" word_delimiter_token = "|" raw_datasets = DatasetDict({"test": result}) vocab_dict = create_vocabulary_from_data( raw_datasets, word_delimiter_token=word_delimiter_token, unk_token=unk_token, pad_token=pad_token, ) print(vocab_dict) print("OOV chars:", set(vocab_dict) - set(tokenizer.get_vocab())) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--check_vocab", action="store_true", help="Verify that normalized target text is within character set" ) args = parser.parse_args() main(args)