--- license: apache-2.0 --- --- language: - es license: apache-2.0 tags: - "borges" - "spanish" - "text-generation" datasets: - "borges_works" widget: - text: "El modelo del lenguaje GPT es capaz de" - text: "Las obras de Borges son una fuente rica de conocimiento y creatividad" --- # GPT2-borges (gpt2-borges) ## Table of Contents
Click to expand - [Overview](#overview) - [Model description](#model-description) - [Intended uses and limitations](#intended-uses-and-limitations) - [How to Use](#how-to-use) - [Training](#training) - [Training data](#training-data) - [Training procedure](#training-procedure) - [Additional information](#additional-information) - [Author](#author) - [Contact information](#contact-information) - [Copyright](#copyright) - [Licensing information](#licensing-information) - [Funding](#funding) - [Citation Information](#citation-information) - [Disclaimer](#disclaimer)
## Overview - **Architecture:** gpt2-base - **Language:** Spanish - **Task:** text-generation - **Data:** Borges Works ## Model description **GPT2-borges** is a transformer-based model for the Spanish language. It is based on the PlanTL-GOB-ES/gpt2-base-bne model and has been pre-trained using a curated dataset consisting of the complete works of Jorge Luis Borges, a renowned Argentine writer. ## Intended uses and limitations You can use the raw model for text generation or fine-tune it to a downstream task. ## How to Use Here is how to use this model: You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name = 'lucasbiagettia/gpt2-base-borges' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ``` ```python input_text = "La arena me recuerda el profundo dolor de la nostalgia" input_ids = self.tokenizer.encode(input_text, return_tensors="pt") attention_mask = torch.ones(input_ids.shape, dtype=torch.long) generated_text = self.model.generate( input_ids=input_ids, attention_mask=attention_mask, max_new_tokens = 100, num_return_sequences=1, no_repeat_ngram_size=6, top_k=35, top_p=0.95, temperature=0.8, pad_token_id=50256, do_sample=True, ) ``` ## Training was trained with the following dataset: https://github.com/lucasbiagettia/borges_plain_text_dataset