--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: xls-r-fleurs_nl-run1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: validation args: default metrics: - name: Wer type: wer value: 0.4336403033586132 --- # xls-r-fleurs_nl-run1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the FLEURS (nl) dataset. It achieves the following results on the evaluation set: - Wer (Validation): 40.36% - Wer (Test): 40.73% ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer (Train) | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9153 | 1.03 | 250 | 2.9252 | 1.0 | | 2.6885 | 2.05 | 500 | 1.2362 | 0.8548 | | 0.7443 | 3.08 | 750 | 0.6072 | 0.5436 | | 0.3497 | 4.11 | 1000 | 0.5776 | 0.4664 | | 0.2228 | 5.14 | 1250 | 0.5482 | 0.4361 | | 0.1626 | 6.16 | 1500 | 0.5538 | 0.4166 | | 0.1301 | 7.19 | 1750 | 0.5696 | 0.4336 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3