import gradio as gr import model_wrapper model = model_wrapper.PredictionModel() def pretty_print_opinion(opinion_dict): res = [] maxlen = max([len(key) for key in opinion_dict.keys()]) + 2 maxlen = 0 for key, value in opinion_dict.items(): if key == 'Polarity': res.append(f'{(key + ":").ljust(maxlen)} {value}') else: res.append(f'{(key + ":").ljust(maxlen)} \'{" ".join(value[0])}\'') return '\n'.join(res) + '\n' def predict(text): print(f'Input message "{text}"') try: predictions = model([text]) prediction = predictions[0] results = [] if not prediction['opinions']: return 'No opinions detected' for opinion in prediction['opinions']: results.append(pretty_print_opinion(opinion)) print(f'Successfully predicted SA for input message "{text}": {results}') return '\n'.join(results) except Exception as e: print(f'Error for input message "{text}": {e}') raise e markdown_text = '''

This space provides a gradio demo and an easy-to-run wrapper of the pre-trained model for structured sentiment analysis in Norwegian language, pre-trained on the [NoReC dataset](https://huggingface.co/datasets/norec). This space containt an implementation of method described in "Direct parsing to sentiment graphs" (Samuel _et al._, ACL 2022). The main repository that also contains the scripts for training the model, can be found on the project [github](https://github.com/jerbarnes/direct_parsing_to_sent_graph). The sentiment graph model is based on an underlying masked language model – [NorBERT 2](https://huggingface.co/ltg/norbert2). The proposed method suggests three different ways to encode the sentiment graph: "node-centric", "labeled-edge", and "opinion-tuple". The current model - uses "labeled-edge" graph encoding - does not use character-level embedding - all other hyperparameters are set to [default values](https://github.com/jerbarnes/direct_parsing_to_sent_graph/blob/main/perin/config/edge_norec.yaml) , and it achieves the following results on the held-out set of the NoReC dataset: | Unlabeled sentiment tuple F1 | Target F1 | Relative polarity precision | |:----------------------------:|:----------:|:---------------------------:| | 0.434 | 0.541 | 0.926 | In "Word Substitution with Masked Language Models as Data Augmentation for Sentiment Analysis", we analyzed data augmentation strategies for improving performance of the model. Using masked-language modeling (MLM), we augmented the sentences with MLM-substituted words inside, outside, or inside+outside the actual sentiment tuples. The results below show that augmentation may be improve the model performance. This space, however, runs the original model trained without augmentation. | | Augmentation rate | Unlabeled sentiment tuple F1 | Target F1 | Relative polarity precision | |----------------|-------------------|------------------------------|-----------|-----------------------------| | Baseline | 0% | 43.39 | 54.13 | 92.59 | | Outside | 59% | **45.08** | 56.18 | 92.95 | | Inside | 9% | 43.38 | 55.62 | 92.49 | | Inside+Outside | 27% | 44.12 | **56.44** | **93.19** | The model can be easily used for predicting sentiment tuples as follows: ```python >>> import model_wrapper >>> model = model_wrapper.PredictionModel() >>> model.predict(['vi liker svart kaffe']) [{'sent_id': '0', 'text': 'vi liker svart kaffe', 'opinions': [{'Source': [['vi'], ['0:2']], 'Target': [['svart', 'kaffe'], ['9:14', '15:20']], 'Polar_expression': [['liker'], ['3:8']], 'Polarity': 'Positive'}]}] ``` ''' with gr.Blocks() as demo: with gr.Row() as row: text_input = gr.Textbox(label="input") text_output = gr.Textbox(label="output") with gr.Row() as row: text_button = gr.Button("submit") text_button.click(fn=predict, inputs=text_input, outputs=text_output) gr.Markdown(markdown_text) demo.launch()