--- language: - 'no' - nb - nn license: cc-by-4.0 pipeline_tag: token-classification --- # Targeted Sentiment Analysis model for Norwegian text This model is a fine-tuned version of [ltg/norbert3-large](https://huggingface.co/ltg/norbert3-large) For Targeted Sentiment Analysis (TSA) on Norwegian text. The fine-tuning script is avaiable [on github](https://github.com/egilron/seq-label.git). In TSA, we identify sentiment targets, "That what is spoken positively or negatively about" in each sentence. Our models performs the task through sequence labeling, AKA "token classification". The dataset used for fine-tuning is [ltg/norec_tsa](https://huggingface.co/datasets/ltg/norec_tsa), at its defaul settings, were sentiment targets are labeled as either "targ-Positive" or "targ-Negative". The norec_tsa dataset is derived from the [NoReC_fine dataset](https://github.com/ltgoslo/norec_fine). ## Quick start You can use this model in your scripts as follows: ```>>> from transformers import pipeline >>> origin = "ltg/norbert3-large_TSA" >>> trust_remote = "norbert3" in origin.lower() >>> text = "Hans hese , litt såre stemme kler bluesen , men denne platen kommer neppe til å bli blant hans største kommersielle suksesser ." >>> if trust_remote: # Downloads configurations for norbert3 ... pipe = transformers.pipeline( "token-classification", ... aggregation_strategy='first', ... model = origin, ... trust_remote_code=trust_remote, ... tokenizer = AutoTokenizer.from_pretrained(origin) ... ) ... preds = pipe(text) ... for p in preds: ... print(p) {'entity_group': 'targ-Positive', 'score': 0.6990814, 'word': ' Hans hese , litt såre stemme', 'start': 0, 'end': 28} {'entity_group': 'targ-Negative', 'score': 0.5721016, 'word': ' platen', 'start': 53, 'end': 60} ``` ## Training hyperparameters - per_device_train_batch_size: 64 - per_device_eval_batch_size: 8 - learning_rate: 1e-05 - gradient_accumulation_steps: 1 - num_train_epochs: 24 (best epoch 18) - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 ## Evaluation ``` precision recall f1-score support targ-Negative 0.4648 0.3143 0.3750 210 targ-Positive 0.5097 0.6019 0.5520 525 micro avg 0.5013 0.5197 0.5104 735 macro avg 0.4872 0.4581 0.4635 735 weighted avg 0.4969 0.5197 0.5014 735 ```