--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-word-embedding results: [] --- # bert-finetuned-ner-word-embedding This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the combined training dataset(tweetner7(train_2021)+augmented dataset(train_2021) using word embedding technique). It achieves the following results on the evaluation set: - Loss: 0.5502 - Precision: 0.6522 - Recall: 0.4973 - F1: 0.5643 - Accuracy: 0.8615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7144 | 1.0 | 624 | 0.5837 | 0.7042 | 0.4422 | 0.5433 | 0.8601 | | 0.5257 | 2.0 | 1248 | 0.5522 | 0.6575 | 0.4803 | 0.5551 | 0.8610 | | 0.4564 | 3.0 | 1872 | 0.5502 | 0.6522 | 0.4973 | 0.5643 | 0.8615 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.1 - Datasets 2.10.1 - Tokenizers 0.12.1