--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: togethercomputer/evo-1-8k-base model-index: - name: lora_evo_ta_all_layers_16 results: [] --- # lora_evo_ta_all_layers_16 This model is a fine-tuned version of [togethercomputer/evo-1-8k-base](https://huggingface.co/togethercomputer/evo-1-8k-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5463 ## Model description Trained on single ID token 5K dataset filtered to 10k sequences (20% for test data = 2000) lora_alpha = 128 lora_dropout = 0.1 lora_r = 128 epochs = 3 learning rate = 3e-4 warmup_steps=200 gradient_accumulation_steps = 1 train_batch = 2 eval_batch = 2 ONLY on attention layers and MLPs of last 31 layers <-------------------- ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 2.8598 | 0.4998 | 1999 | 2.6289 | | 2.5927 | 0.9995 | 3998 | 2.5852 | | 2.5467 | 1.4992 | 5997 | 2.5717 | | 2.5487 | 1.999 | 7996 | 2.5554 | | 2.4987 | 2.4988 | 9995 | 2.5546 | | 2.4934 | 2.9985 | 11994 | 2.5463 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1