{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f26a03d2740>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684257615452367392, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGLppL9m/s4/vyRuvyztGL+UzoU/fUv/PqruhD3lxWI9aCxLv17EsD+ZnT2/mIECPiBn1j7Uk4g/ohsqPzIgBLzhjqs/XK6qP/nHfj+t9cO9DizcvgQ9SD+scr2+c1qCPeeGhL8zkzY/zVX8v+wjhj+tU6E/58IMPkjoCz8C7cM/S5KSP2gIbz+wmS2//MlKv9UfBj+Pc94+HniHPxEX/z6N2Sg/JUuuv9hUFj9g1k2+JtCTupE4mr+RP26/OgOiPy61J7/vtGw8vK9pP9XJFsBdQXc/F3qzv+nbAT8RSHS/ASMxPwePEr+tc/U+SKlcP8l1Cj8AxsI9yYvEvkI74L16Too++AG+vReHLb86WtU+XG+Bvfz4hj9EljW+o4vePipAhj9iGds/4Uk7v9Qug75Hdgq/PSY2v/NDnT+rt54954aEvzOTNj/NVfy/7COGP/JLlD85+ry/+bCbvgXkmD3Z5YA/V0OsP+w6G76oMAQ+csIbvlZhKMDBdSS/ZKwpP+oXiDyTXq6++iA9v/XIJj8rIKE/BejWvjYNgL8IPYa/sr8FP6rU779tzJw/Bo7QveeGhL8zkzY/zVX8v+wjhj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAVlm21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAn5USvgAAAACN2/O/AAAAAGK9Pb0AAAAAt63jPwAAAACjehK9AAAAAJku3T8AAAAA3WzOPQAAAAAGStu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFKu2NAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBlJ2T0AAAAA/c/7vwAAAACfa/I9AAAAAKaB5j8AAAAAWNaHPQAAAAAFDvs/AAAAAMv0jj0AAAAA+sjpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoKuDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBmxQm9AAAAABJE978AAAAAUYEAPgAAAABiUvo/AAAAAAThpLwAAAAArFrqPwAAAABgk6w9AAAAAAGn7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/dGi2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyOVcuQAAAAAbL+i/AAAAAHmcMj0AAAAAp4v5PwAAAADBdXm9AAAAALfZ+j8AAAAApKMAPgAAAADwNOe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrDFcTrVvyMAWyUTegDjAF0lEdAqn7iRlpXZHV9lChoBkdAlJNyed07sGgHTegDaAhHQKqABVWCEpR1fZQoaAZHQJnAZJiAlOZoB03oA2gIR0Cqgi6Qmu1XdX2UKGgGR0CWGfUD+zdDaAdN6ANoCEdAqorU6YE4enV9lChoBkdAmC4W0AtFrmgHTegDaAhHQKqK/3OfNA11fZQoaAZHQJblx0nw5NpoB03oA2gIR0CqjCxcNYr8dX2UKGgGR0CUujpjc2zfaAdN6ANoCEdAqo5q0QbuMXV9lChoBkdAkc5iSFGoaWgHTegDaAhHQKqa9yHVPN51fZQoaAZHQJZJrnNgSe1oB03oA2gIR0CqmyMEaESNdX2UKGgGR0CWnnlSjxkNaAdN6ANoCEdAqpw/CyhSL3V9lChoBkdAlOedqUNayWgHTegDaAhHQKqeaIbfgrJ1fZQoaAZHQJpLeHXVbzNoB03oA2gIR0CqpxWLP2PDdX2UKGgGR0Cd9NkD6nBMaAdN6ANoCEdAqqdA2sJY1nV9lChoBkdAnGvDdk8RtmgHTegDaAhHQKqoZ+iJwbV1fZQoaAZHQJik3wkPcztoB03oA2gIR0Cqqp3mNipedX2UKGgGR0Caw8dmg8KYaAdN6ANoCEdAqrV/ovBacXV9lChoBkdAmGZ3QY1pCmgHTegDaAhHQKq1w2Yv38J1fZQoaAZHQJqf1TZQHiZoB03oA2gIR0Cqt3+1rqMWdX2UKGgGR0CbN3dv863iaAdN6ANoCEdAqrpUauOjqXV9lChoBkdAiyWIQe3hGmgHTf4BaAhHQKq9M92X9it1fZQoaAZHQJ+cVKXfIjpoB03oA2gIR0CqwwYM4LkTdX2UKGgGR0CZzCLgGbCraAdN6ANoCEdAqsRTSRbKR3V9lChoBkdAlwoepKjBVWgHTegDaAhHQKrGiFY+0PZ1fZQoaAZHQJskIX3xnWdoB03oA2gIR0CqyW9Htnf3dX2UKGgGR0CamHccU/OdaAdN6ANoCEdAqtBBzaK1onV9lChoBkdAnM41UQ04zmgHTegDaAhHQKrSMwA2hqV1fZQoaAZHQJkrklE7W/doB03oA2gIR0Cq1azUZvUCdX2UKGgGR0CagJt8NQTFaAdN6ANoCEdAqtmKWTot+XV9lChoBkdAhEt3m3fAK2gHTdkBaAhHQKrfYIN3GGV1fZQoaAZHQJdcfRBu4w1oB03oA2gIR0Cq32n3lCC0dX2UKGgGR0CbSXD15B1LaAdN6ANoCEdAquC9aIN3GHV9lChoBkdAk1GFuzhP02gHTegDaAhHQKrjCIWP91l1fZQoaAZHQJve70se4kNoB03oA2gIR0Cq685VwPy1dX2UKGgGR0CQ/du3c580aAdN6ANoCEdAquvYBo24u3V9lChoBkdAkfFJiAlOXWgHTegDaAhHQKrtlnVXmvJ1fZQoaAZHQJzB6ZLIxQBoB03oA2gIR0Cq8L9wFTvRdX2UKGgGR0CWDTMFUyYYaAdN6ANoCEdAqvuFQuVX3nV9lChoBkdAnOBrjtG/e2gHTegDaAhHQKr7jnhbW3B1fZQoaAZHQIs6yIi1RchoB03oA2gIR0Cq/NfW1+iKdX2UKGgGR0CYBAx0+1SgaAdN6ANoCEdAqv8XbO/tY3V9lChoBkdAlIjtvn8sMGgHTegDaAhHQKsHw2sJY1Z1fZQoaAZHQJxJyQRwqAloB03oA2gIR0CrB8w1ivxIdX2UKGgGR0CaZ2iFTNt7aAdN6ANoCEdAqwkWFL39JnV9lChoBkdAm0lxPCVKPGgHTegDaAhHQKsLfWzWwvB1fZQoaAZHQJhp1RWLgoBoB03oA2gIR0CrF5dKmKqGdX2UKGgGR0CZRUuNPxhEaAdN6ANoCEdAqxeguRLbpXV9lChoBkdAnb6Vgx8D0WgHTegDaAhHQKsY8z1schl1fZQoaAZHQJsqU5eZ5RloB03oA2gIR0CrGypWmxdIdX2UKGgGR0Cco7DfFaStaAdN6ANoCEdAqyPqqhlDnnV9lChoBkdAnDvPJmuklGgHTegDaAhHQKsj8zD4xlB1fZQoaAZHQJ1FNmxt52RoB03oA2gIR0CrJTumrKeTdX2UKGgGR0CdKZNKRMewaAdN6ANoCEdAqyd0vXbudHV9lChoBkdAnC/wGOdXk2gHTegDaAhHQKszDvOyE+R1fZQoaAZHQJ0dNfE4vOBoB03oA2gIR0CrMx0sOG0vdX2UKGgGR0CccobVz6rOaAdN6ANoCEdAqzToNRWLgnV9lChoBkdAnk0h0uDjBGgHTegDaAhHQKs3B1klNUR1fZQoaAZHQI5pjdepn6FoB03oA2gIR0CrP6JCBwuNdX2UKGgGR0CaXPS2Yv38aAdN6ANoCEdAqz+uy1NQCXV9lChoBkdAmdVtyDIzWWgHTegDaAhHQKtA80CRwId1fZQoaAZHQJhTHfek56toB03oA2gIR0CrQyC3gDRudX2UKGgGR0Cb4xXWvr4WaAdN6ANoCEdAq01/sXzlLnV9lChoBkdAnNhVlwtJ4GgHTegDaAhHQKtNja37UG51fZQoaAZHQITdD0cwQDpoB03oA2gIR0CrT6fWDpTudX2UKGgGR0CcbmyrgflqaAdN6ANoCEdAq1MXKQq7RXV9lChoBkdAhWwqIJqqO2gHTegDaAhHQKtbtadMCcR1fZQoaAZHQJrEVgLJCBxoB03oA2gIR0CrW79srNGFdX2UKGgGR0CblPqpcX3yaAdN6ANoCEdAq10VRzijtXV9lChoBkdAmzXiUX531WgHTegDaAhHQKtfRhuwX691fZQoaAZHQJn1p7laKUFoB03oA2gIR0CraE85bQkYdX2UKGgGR0B7qHpzLfUGaAdN6ANoCEdAq2hcDdP+GXV9lChoBkdAmlGh19v0iGgHTegDaAhHQKtqMGyHEdh1fZQoaAZHQJxcTSPU8V5oB03oA2gIR0CrbXqTjebedX2UKGgGR0CVRb0/nnuBaAdNXgNoCEdAq3YNbcGke3V9lChoBkdAmeVQC0WuYGgHTegDaAhHQKt3s9Gqgh91fZQoaAZHQJRz02m51/5oB03oA2gIR0CreQ5mAbyZdX2UKGgGR0CBcujeKsMiaAdN6ANoCEdAq3tJ9E1EVnV9lChoBkdAl3Q3mzSkTGgHTegDaAhHQKuCR5prULF1fZQoaAZHQJi82D6Fds1oB03oA2gIR0Crg/SOzY29dX2UKGgGR0CACkS+QEIPaAdN6ANoCEdAq4VC1NQCS3V9lChoBkdAmSXJRfnfVWgHTegDaAhHQKuIM9qUNa11fZQoaAZHQJGEaioKlYVoB03oA2gIR0Crkiy5RTCMdX2UKGgGR0CaTK3/giu/aAdN6ANoCEdAq5PUYIjW1HV9lChoBkdAmlHiyY5T62gHTegDaAhHQKuVJNr0rbx1fZQoaAZHQJf9W5kK/mFoB03oA2gIR0Crl1QXyiEhdX2UKGgGR0CNYtLCemNzaAdN6ANoCEdAq55W2uxKQXV9lChoBkdAnmGoqCpWFWgHTegDaAhHQKuf+JgLJCB1fZQoaAZHQKA8c3sHB1toB03oA2gIR0CroWFEiMYNdX2UKGgGR0CeJqNWEK3NaAdN6ANoCEdAq6OR13dKunV9lChoBkdAnTN6z/p+t2gHTegDaAhHQKutW68QI2R1fZQoaAZHQJ/AOtQsPJ9oB03oA2gIR0CrsAHvc8DCdX2UKGgGR0Cey0aa1Cw9aAdN6ANoCEdAq7FVW0Z3tHV9lChoBkdAnf6VSOzY3GgHTegDaAhHQKuzpTqB3A51fZQoaAZHQJcz2Lehwl1oB03oA2gIR0CrutJJf6XTdX2UKGgGR0CDebJUYKplaAdN6ANoCEdAq7x6lk6LfnV9lChoBkdAkiz0ZiuuBGgHTegDaAhHQKu90WFev6l1fZQoaAZHQJq+kysS00FoB03oA2gIR0CrwAA00m+kdX2UKGgGR0CeqTjd56dEaAdN6ANoCEdAq8iYGW2PUHV9lChoBkdAl/CyPIXCTGgHTegDaAhHQKvLMbutwJh1fZQoaAZHQJtGsxwhnrZoB03oA2gIR0CrzUKfe1rqdX2UKGgGR0Cbi6hPCVKPaAdN6ANoCEdAq9BDNwBHTnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}