--- license: apache-2.0 base_model: facebook/convnextv2-base-1k-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: convnextv2-base-1k-224-finetuned-cassava-leaf-disease results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8845794392523364 --- # convnextv2-base-1k-224-finetuned-cassava-leaf-disease This model is a fine-tuned version of [facebook/convnextv2-base-1k-224](https://huggingface.co/facebook/convnextv2-base-1k-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3329 - Accuracy: 0.8846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 240 - eval_batch_size: 240 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 960 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7644 | 0.99 | 20 | 1.5288 | 0.6140 | | 0.8358 | 1.98 | 40 | 0.6582 | 0.7584 | | 0.5367 | 2.96 | 60 | 0.4823 | 0.8229 | | 0.4645 | 4.0 | 81 | 0.4269 | 0.8556 | | 0.4218 | 4.99 | 101 | 0.3912 | 0.8659 | | 0.391 | 5.98 | 121 | 0.3637 | 0.8748 | | 0.3789 | 6.96 | 141 | 0.3554 | 0.8748 | | 0.3684 | 8.0 | 162 | 0.3489 | 0.8790 | | 0.3671 | 8.99 | 182 | 0.3503 | 0.8813 | | 0.3545 | 9.98 | 202 | 0.3442 | 0.8818 | | 0.339 | 10.96 | 222 | 0.3369 | 0.8841 | | 0.3225 | 12.0 | 243 | 0.3424 | 0.8808 | | 0.3228 | 12.99 | 263 | 0.3386 | 0.8850 | | 0.3141 | 13.98 | 283 | 0.3344 | 0.8846 | | 0.3219 | 14.81 | 300 | 0.3329 | 0.8846 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.1