--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - dvilasuero/DistilabelBeagle14-7B - beowolx/CodeNinja-1.0-OpenChat-7B - WizardLM/WizardMath-7B-V1.1 base_model: - dvilasuero/DistilabelBeagle14-7B - beowolx/CodeNinja-1.0-OpenChat-7B - WizardLM/WizardMath-7B-V1.1 --- # Pearl-3x7B Pearl-3x7B is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [dvilasuero/DistilabelBeagle14-7B](https://huggingface.co/dvilasuero/DistilabelBeagle14-7B) * [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B) * [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1) ## 🧩 Configuration ```yaml base_model: argilla/CapybaraHermes-2.5-Mistral-7B experts: - source_model: dvilasuero/DistilabelBeagle14-7B positive_prompts: - "chat" - "assistant" - "tell me" - "explain" - "help" - "guide" - "assist" - "answer" - "support" - "clarify" - "elaborate" - "educate" - "inform" - "advise" - "instruct" - source_model: beowolx/CodeNinja-1.0-OpenChat-7B positive_prompts: - "code" - "python" - "javascript" - "programming" - "algorithm" - "develop" - "debug" - "optimize" - "software" - "engineer" - "web" - "application" - "framework" - "library" - "syntax" - "logic" - "compile" - "execute" - source_model: WizardLM/WizardMath-7B-V1.1 positive_prompts: - "reason" - "math" - "mathematics" - "solve" - "count" - "calculate" - "analyze" - "derive" - "compute" - "numbers" - "equation" - "theorem" - "proof" - "geometry" - "trigonometry" - "statistics" - "probability" - "algebra" - "integral" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "louisbrulenaudet/Pearl-3x7B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```