{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f94e813b4c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687853237293749673, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMA5MD6hH4G8TYjHO91TQrpN9/a9GgscuwAAgD8AAIA/AADIuY8uIbqSD4M5G1LBNBMUlzuG/Jq4AACAPwAAgD/zbiY+tqUuvBVRUDsKmlG5ps+tvfJRiboAAIA/AACAP2Yr4j0UZIW62uMMtHeFWa/2Jkw7ORSYMwAAAAAAAIA/utlPvuezNT+4xFi+hngDvy4nPb71zKE8AAAAAAAAAAAzteY9eyqdutx8PTqAvTs3XldWOgfAS7kAAIA/AACAPzNX1Lv5Dqg/XXWEveM9Dr8MzAu8O0xnvAAAAAAAAAAAACPFvb+eSD56qMw9ckJTvt39/jxbIuw7AAAAAAAAAABggz2+qJ2wvHIdPrs0va+5WU8kPkbugDoAAIA/AACAP1pb6r3vfAc+KHXrPYRiFL6qDDE8fp2RvAAAAAAAAAAA2tLYvfI7rT84Xye/AbW2vtnWir2WV4++AAAAAAAAAABzMaM9bvfBPwsX9j42Tfs9j7GDPdmTij4AAAAAAAAAAI0Jib2FuKG7mJYNPqcexri27BO9SofROQAAgD8AAIA/RuFBvkFYxrzmDjI6jWWtOIlgKz6Cq225AACAPwAAgD9aoj6+VHuvvDhBZbuDWsi5UCcdPrVNlzoAAIA/AACAP2aMgbzlVeQ+Xt7DOXMbj75ugAi9YmKQuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVAgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9/Ev0yxiaMAWyUS+yMAXSUR0CXEpAUL2HtdX2UKGgGR0Bw6I3qAz55aAdL3WgIR0CXFNHj6vaDdX2UKGgGR0BxYUvRJEpiaAdNCgFoCEdAlxWEsJ6Y3XV9lChoBkdAcLGoWpIczmgHTQEBaAhHQJcXU7V8Ti91fZQoaAZHQHHZFgH/tIFoB0vQaAhHQJcYnf/FR511fZQoaAZHQHDpC+6Ae7toB0vQaAhHQJcYwYEW69V1fZQoaAZHQG/AjOcDr7hoB00OAWgIR0CXG8814xDcdX2UKGgGR0BxfFTGYKIBaAdL5GgIR0CXHBNx2jfvdX2UKGgGR0BsG94C6pYLaAdNMAFoCEdAlx3kY4yXU3V9lChoBkdAbqUOXE61cGgHS9toCEdAlx4M6mwaBXV9lChoBkdAcjiEiMYMv2gHS/hoCEdAlx6irT6SDHV9lChoBkdAYJM2cawUxmgHTegDaAhHQJcfVjgAIY51fZQoaAZHQG4dL9MsYl9oB0voaAhHQJchTA2ycCp1fZQoaAZHQHDMIl6Z6UtoB00cAWgIR0CXIZRe1KGtdX2UKGgGR0BwyrY6GQCCaAdL22gIR0CXIdkSmIj4dX2UKGgGR0Bw/6PQv6CUaAdNAgFoCEdAlyHkAksz23V9lChoBkdAbZzVpblijWgHS+xoCEdAlyM/9P1tf3V9lChoBkdAcX8mFJxvN2gHS95oCEdAlySKL0jC53V9lChoBkdAb+4h5gPVeGgHS95oCEdAlySzmW+oL3V9lChoBkdAckfdp7CzkmgHTRsBaAhHQJck8VtXPqt1fZQoaAZHQGCF34j8k2RoB03oA2gIR0CXJZ2XLNfPdX2UKGgGR0BwVSNQ0oBraAdL42gIR0CXJkUdaMaTdX2UKGgGR0Bz2OtDD0lJaAdL/GgIR0CXJzim2sq8dX2UKGgGR0BjkaeCkGiYaAdN6ANoCEdAlygnqqwQlXV9lChoBkdAcZXLZzxPPGgHS/toCEdAlyhKNVBD5XV9lChoBkdAXr7rqt5lfGgHTegDaAhHQJcoZ+jM3ZR1fZQoaAZHQGS4l2eQMhJoB03oA2gIR0CXKPtEXtSidX2UKGgGR0BwazoIOYplaAdL9GgIR0CXKcU9ZA6ddX2UKGgGR0BxCutEG7jDaAdL72gIR0CXKdsE7nxKdX2UKGgGR0BxDfJGOMl1aAdL82gIR0CXKe+MIeHSdX2UKGgGR0Bye6r/82rGaAdNEwFoCEdAlyplZLZi/nV9lChoBkdAcGn3Sro4dmgHS/loCEdAlyscuez2OHV9lChoBkdAcVw1uR9w32gHS9toCEdAlys1yimEXnV9lChoBkdAcTr287IT5GgHS/RoCEdAlywFSsKb8XV9lChoBkdAbtfbypaRp2gHS+FoCEdAlyw9rKvFFXV9lChoBkdAcGshw2l2vGgHTSwBaAhHQJctzLW7OFB1fZQoaAZHQHAE/v0AcT9oB0vfaAhHQJcubcL0Bfd1fZQoaAZHQHJRLHAAQxxoB00YAWgIR0CXLnZaFEiMdX2UKGgGR0BvQLqlgtvoaAdL62gIR0CXLu225QP7dX2UKGgGR0BvzahcqvvCaAdNBgFoCEdAly/mH58BuHV9lChoBkdAcdZ6be/HpGgHTSsBaAhHQJcv/HsC1Z11fZQoaAZHQHPu8ohIOH5oB0vYaAhHQJcwvbblA/t1fZQoaAZHQHCQOM2m52BoB0vwaAhHQJcw2F8G9pR1fZQoaAZHQG9LZHEuQIVoB001AWgIR0CXMgtmL9/CdX2UKGgGR0BwXpxZMcp9aAdL8GgIR0CXMmNvwVj7dX2UKGgGR0Bwdir2g398aAdL0WgIR0CXMnMUAT7EdX2UKGgGR0Buw6p3os7NaAdL3GgIR0CXMwlS0jTsdX2UKGgGR0ByKqed07r+aAdNDgFoCEdAlzNuuJUHZHV9lChoBkdAbibi97F85WgHS91oCEdAlzTXyRSxaHV9lChoBkdAciNpYLb5/WgHS95oCEdAlzWOI2wV03V9lChoBkdAbmCEeyRjjWgHS+JoCEdAlzZEl3QlbHV9lChoBkdAbhIhWYF7lmgHS/NoCEdAlzZV0tAcDXV9lChoBkdAb+cE/0NBnmgHS+toCEdAlze4Chew93V9lChoBkdAUmrwVj7Q9mgHS6VoCEdAlzlLlFMIvHV9lChoBkdAcQr2nbZezGgHS9doCEdAlznu6ErXlXV9lChoBkdAcjr+8XenAWgHTSUBaAhHQJc596F/QSl1fZQoaAZHQHDrDsUqQRxoB0v1aAhHQJc6sjgQ6IZ1fZQoaAZHQHAeVLSNOudoB00hAWgIR0CXOvAcT8HfdX2UKGgGR0BzYRdonKGMaAdNKgFoCEdAlzspB5X2d3V9lChoBkdAcRxq//NqxmgHS/9oCEdAlzt1TefqYHV9lChoBkdAb2br5ZbILmgHS+BoCEdAlz3PPomoi3V9lChoBkdAcRYG8Empl2gHS/9oCEdAlz40HIIWxnV9lChoBkdAb3IVj7Q9imgHS+hoCEdAlz7nUH6dlXV9lChoBkdAcV7717IDHWgHTWEBaAhHQJc/z8BMi8p1fZQoaAZHQF9uV5a/yoZoB03oA2gIR0CXQFsq8UVSdX2UKGgGR0Bx6Tz06HTJaAdNGwFoCEdAl0DWys0YTHV9lChoBkdAcEQRmK64D2gHTQYBaAhHQJdBgn0Cih51fZQoaAZHQEYaDtgKF7FoB0vdaAhHQJdCCLVFx4p1fZQoaAZHQHF3SNfgJkZoB0vPaAhHQJdCc/B3zMB1fZQoaAZHQGwmyVW0Z3toB0vjaAhHQJdC4DMeOn51fZQoaAZHQHHqSkwevIRoB00BAWgIR0CXQzmLcbiqdX2UKGgGR0BwVcBp5/smaAdL72gIR0CXQ7nCfpUxdX2UKGgGR0BLuXqqwQlKaAdLx2gIR0CXRShZQpF1dX2UKGgGR0Bxaythd+ocaAdL/WgIR0CXSI/LTx5LdX2UKGgGR0Bxnah4+r2haAdL0mgIR0CXSjBqbjLkdX2UKGgGR0Bwui8scyWSaAdNAgFoCEdAl0tHHim2s3V9lChoBkdAcgYYqoZQ52gHS8hoCEdAl0xGJN0vG3V9lChoBkdAcTRNWU8mr2gHS8poCEdAl00k4m1IAnV9lChoBkdAcTH/C66J7GgHS/VoCEdAl01RJyyUtHV9lChoBkdAVYpCngpBomgHS5NoCEdAl01hWgezU3V9lChoBkdAcYMpj+aScWgHS9FoCEdAl04rv5P/JnV9lChoBkdAcU2A7PppvmgHS/9oCEdAl07N1yNn5HV9lChoBkdAYsWTTvy9VWgHTegDaAhHQJdP1IDoyKx1fZQoaAZHQGDqhqKxcFBoB03oA2gIR0CXUCg5imVJdX2UKGgGR0BwiTTb349HaAdNHwFoCEdAl1LRdIGyHHV9lChoBkdAcN0KWLP2PGgHS+BoCEdAl1SenuRcNnV9lChoBkdAblXIikfs/2gHS99oCEdAl1X+vQnhKnV9lChoBkdAcFsD8cdYGWgHS99oCEdAl1eILCvX9XV9lChoBkdAcR/l0o0ALmgHS/5oCEdAl1gD4593KXV9lChoBkdAbl9fgJkXlGgHS9toCEdAl1gP5pJwsHV9lChoBkdAcWWXEqDsdGgHS+RoCEdAl1g6k2xY73V9lChoBkdAcOAKSgXdkGgHS/loCEdAl1mI8IRh+nV9lChoBkdAcAbCMglniGgHS+BoCEdAl1nepCKJmHV9lChoBkdAcvEEa2nbZmgHTREBaAhHQJdar9If8uV1fZQoaAZHQHCWssDnvDxoB00CAWgIR0CXWskZrHlwdX2UKGgGR0BwkCnDR+jNaAdL6GgIR0CXW/F6zE75dX2UKGgGR0Bw4sL+glF+aAdL/mgIR0CXXgzvJA+qdX2UKGgGR0Bt85eokzGhaAdL5mgIR0CXX4GcFyJbdX2UKGgGR0BxmcsmOU+taAdNCgFoCEdAl1+CbDuSfXV9lChoBkdAcW8sijcmB2gHS91oCEdAl1+xhc7henVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}