--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-finetuned-ner results: [] --- # roberta-base-finetuned-ner This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1738 - Precision: 0.6666 - Recall: 0.7036 - F1: 0.6846 - Accuracy: 0.6664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.19 | 50 | 1.3378 | 0.2046 | 0.2159 | 0.2101 | 0.2062 | | No log | 0.37 | 100 | 1.3271 | 0.2419 | 0.2553 | 0.2484 | 0.2431 | | No log | 0.56 | 150 | 1.3164 | 0.2741 | 0.2893 | 0.2815 | 0.2753 | | No log | 0.75 | 200 | 1.3061 | 0.3090 | 0.3261 | 0.3173 | 0.3100 | | No log | 0.93 | 250 | 1.2965 | 0.3373 | 0.3560 | 0.3464 | 0.3381 | | No log | 1.12 | 300 | 1.2872 | 0.3726 | 0.3932 | 0.3826 | 0.3734 | | No log | 1.31 | 350 | 1.2783 | 0.4027 | 0.4251 | 0.4136 | 0.4034 | | No log | 1.49 | 400 | 1.2697 | 0.4327 | 0.4567 | 0.4444 | 0.4333 | | No log | 1.68 | 450 | 1.2613 | 0.4565 | 0.4818 | 0.4688 | 0.4569 | | 1.2812 | 1.87 | 500 | 1.2537 | 0.4768 | 0.5032 | 0.4897 | 0.4774 | | 1.2812 | 2.05 | 550 | 1.2464 | 0.4971 | 0.5247 | 0.5105 | 0.4975 | | 1.2812 | 2.24 | 600 | 1.2394 | 0.5185 | 0.5472 | 0.5324 | 0.5189 | | 1.2812 | 2.43 | 650 | 1.2328 | 0.5341 | 0.5637 | 0.5485 | 0.5345 | | 1.2812 | 2.61 | 700 | 1.2266 | 0.5480 | 0.5784 | 0.5628 | 0.5484 | | 1.2812 | 2.8 | 750 | 1.2208 | 0.5630 | 0.5942 | 0.5782 | 0.5634 | | 1.2812 | 2.99 | 800 | 1.2153 | 0.5771 | 0.6091 | 0.5927 | 0.5773 | | 1.2812 | 3.17 | 850 | 1.2100 | 0.5903 | 0.6230 | 0.6062 | 0.5905 | | 1.2812 | 3.36 | 900 | 1.2051 | 0.5993 | 0.6325 | 0.6155 | 0.5995 | | 1.2812 | 3.54 | 950 | 1.2008 | 0.6128 | 0.6468 | 0.6294 | 0.6128 | | 1.2012 | 3.73 | 1000 | 1.1967 | 0.6202 | 0.6546 | 0.6370 | 0.6200 | | 1.2012 | 3.92 | 1050 | 1.1931 | 0.6264 | 0.6611 | 0.6433 | 0.6262 | | 1.2012 | 4.1 | 1100 | 1.1896 | 0.6352 | 0.6704 | 0.6523 | 0.6350 | | 1.2012 | 4.29 | 1150 | 1.1865 | 0.6426 | 0.6782 | 0.6599 | 0.6424 | | 1.2012 | 4.48 | 1200 | 1.1838 | 0.6467 | 0.6825 | 0.6641 | 0.6465 | | 1.2012 | 4.66 | 1250 | 1.1814 | 0.6529 | 0.6890 | 0.6705 | 0.6526 | | 1.2012 | 4.85 | 1300 | 1.1794 | 0.6568 | 0.6932 | 0.6745 | 0.6565 | | 1.2012 | 5.04 | 1350 | 1.1777 | 0.6598 | 0.6964 | 0.6776 | 0.6596 | | 1.2012 | 5.22 | 1400 | 1.1763 | 0.6617 | 0.6984 | 0.6795 | 0.6615 | | 1.2012 | 5.41 | 1450 | 1.1752 | 0.6635 | 0.7003 | 0.6814 | 0.6633 | | 1.1618 | 5.6 | 1500 | 1.1744 | 0.6652 | 0.7020 | 0.6831 | 0.6650 | | 1.1618 | 5.78 | 1550 | 1.1740 | 0.6660 | 0.7029 | 0.6839 | 0.6658 | | 1.1618 | 5.97 | 1600 | 1.1738 | 0.6666 | 0.7036 | 0.6846 | 0.6664 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2