# coding=utf-8 import time import gradio as gr # import utils # import commons # from models import SynthesizerTrn # from text import text_to_sequence # from torch import no_grad, LongTensor # hps_ms = utils.get_hparams_from_file(r'./model/config.json') # net_g_ms = SynthesizerTrn( # len(hps_ms.symbols), # hps_ms.data.filter_length // 2 + 1, # hps_ms.train.segment_size // hps_ms.data.hop_length, # n_speakers=hps_ms.data.n_speakers, # **hps_ms.model) # _ = net_g_ms.eval() # speakers = hps_ms.speakers # model, optimizer, learning_rate, epochs = utils.load_checkpoint(r'./model/G_953000.pth', net_g_ms, None) # def get_text(text, hps): # text_norm, clean_text = text_to_sequence(text, hps.symbols, hps.data.text_cleaners) # if hps.data.add_blank: # text_norm = commons.intersperse(text_norm, 0) # text_norm = LongTensor(text_norm) # return text_norm, clean_text # # # def vits(text, language, speaker_id, noise_scale, noise_scale_w, length_scale): # start = time.perf_counter() # if not len(text): # return "输入文本不能为空!", None, None # text = text.replace('\n', ' ').replace('\r', '').replace(" ", "") # if len(text) > 100: # return f"输入文字过长!{len(text)}>100", None, None # if language == 0: # text = f"[ZH]{text}[ZH]" # elif language == 1: # text = f"[JA]{text}[JA]" # else: # text = f"{text}" # stn_tst, clean_text = get_text(text, hps_ms) # with no_grad(): # x_tst = stn_tst.unsqueeze(0) # x_tst_lengths = LongTensor([stn_tst.size(0)]) # speaker_id = LongTensor([speaker_id]) # audio = \ # net_g_ms.infer(x_tst, x_tst_lengths, sid=speaker_id, noise_scale=noise_scale, noise_scale_w=noise_scale_w, # length_scale=length_scale)[0][0, 0].data.float().numpy() # # return "生成成功!", (22050, audio), f"生成耗时 {round(time.perf_counter() - start, 2)} s" # def search_speaker(search_value): # for s in speakers: # if search_value == s: # return s # for s in speakers: # if search_value in s: # return s # # # def change_lang(language): # if language == 0: # return 0.6, 0.668, 1.2 # else: # return 0.6, 0.668, 1.1 download_audio_js = """ () =>{{ let root = document.querySelector("body > gradio-app"); if (root.shadowRoot != null) root = root.shadowRoot; let audio = root.querySelector("#tts-audio").querySelector("audio"); let text = root.querySelector("#input-text").querySelector("textarea"); if (audio == undefined) return; text = text.value; if (text == undefined) text = Math.floor(Math.random()*100000000); audio = audio.src; let oA = document.createElement("a"); oA.download = text.substr(0, 20)+'.wav'; oA.href = audio; document.body.appendChild(oA); oA.click(); oA.remove(); }} """ if __name__ == '__main__': with gr.Blocks() as app: gr.Markdown( "#
VITS语音在线合成demo\n" "#
严禁将模型用于任何商业项目,否则后果自负\n" "
主要有赛马娘,原神中文,原神日语,崩坏3的音色
" '
结果有随机性,语调可能很奇怪,可多次生成取最佳效果
' '
标点符号会影响生成的结果
' ) with gr.Tabs(): with gr.Row(): with gr.Column(): input_text = gr.Textbox(label="Text (100 words limitation)", lines=5, value="今天晚上吃啥好呢。", elem_id=f"input-text") lang = gr.Dropdown(label="Language", choices=["中文", "日语", "中日混合(中文用[ZH][ZH]包裹起来,日文用[JA][JA]包裹起来)"], type="index", value="中文") btn = gr.Button(value="Submit") with gr.Row(): search = gr.Textbox(label="Search Speaker", lines=1) btn2 = gr.Button(value="Search") # sid = gr.Dropdown(label="Speaker", choices=speakers, type="index", value=speakers[228]) with gr.Row(): ns = gr.Slider(label="noise_scale(控制感情变化程度)", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True) nsw = gr.Slider(label="noise_scale_w(控制音素发音长度)", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True) ls = gr.Slider(label="length_scale(控制整体语速)", minimum=0.1, maximum=2.0, step=0.1, value=1.2, interactive=True) with gr.Column(): o1 = gr.Textbox(label="Output Message") o2 = gr.Audio(label="Output Audio", elem_id=f"tts-audio") o3 = gr.Textbox(label="Extra Info") download = gr.Button("Download Audio") # btn.click(vits, inputs=[input_text, lang, sid, ns, nsw, ls], outputs=[o1, o2, o3], api_name="GetSpeech") # download.click(None, [], [], _js=download_audio_js.format()) # btn2.click(search_speaker, inputs=[search], outputs=[sid]) # lang.change(change_lang, inputs=[lang], outputs=[ns, nsw, ls]) app.queue(concurrency_count=1).launch()