--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: es datasets: - lmqg/qg_esquad pipeline_tag: text2text-generation tags: - question generation widget: - text: "del Ministerio de Desarrollo Urbano , Gobierno de la India." example_title: "Question Generation Example 1" - text: "a noviembre , que es también la estación lluviosa." example_title: "Question Generation Example 2" - text: "como el gobierno de Abbott que asumió el cargo el 18 de septiembre de 2013." example_title: "Question Generation Example 3" model-index: - name: lmqg/mt5-small-esquad results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_esquad type: default args: default metrics: - name: BLEU4 type: bleu4 value: 0.09610295466326652 - name: ROUGE-L type: rouge-l value: 0.2462086653539063 - name: METEOR type: meteor value: 0.2271141532255219 - name: BERTScore type: bertscore value: 0.8406637574548622 - name: MoverScore type: moverscore value: 0.5905647613125026 - name: QAAlignedF1Score (BERTScore) type: qa_aligned_f1_score_bertscore value: 0.8942792445970149 - name: QAAlignedRecall (BERTScore) type: qa_aligned_recall_bertscore value: 0.8942792441862537 - name: QAAlignedPrecision (BERTScore) type: qa_aligned_precision_bertscore value: 0.8942792441862537 - name: QAAlignedF1Score (MoverScore) type: qa_aligned_f1_score_moverscore value: 0.6373351335791504 - name: QAAlignedRecall (MoverScore) type: qa_aligned_recall_moverscore value: 0.6373352959963351 - name: QAAlignedPrecision (MoverScore) type: qa_aligned_precision_moverscore value: 0.6373352959963351 --- # Model Card of `lmqg/mt5-small-esquad` This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). Please cite our paper if you use the model ([https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)). ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ``` ### Overview - **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small) - **Language:** es - **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language='es', model='lmqg/mt5-small-esquad') # model prediction question = model.generate_q(list_context=["a noviembre , que es también la estación lluviosa."], list_answer=["noviembre"]) ``` - With `transformers` ```python from transformers import pipeline # initialize model pipe = pipeline("text2text-generation", 'lmqg/mt5-small-esquad') # question generation question = pipe('del Ministerio de Desarrollo Urbano , Gobierno de la India.') ``` ## Evaluation Metrics ### Metrics | Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link | |:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:| | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | default | 0.096 | 0.246 | 0.227 | 0.841 | 0.591 | [link](https://huggingface.co/lmqg/mt5-small-esquad/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_esquad.default.json) | ### Metrics (QAG) | Dataset | Type | QA Aligned F1 Score (BERTScore) | QA Aligned F1 Score (MoverScore) | Link | |:--------|:-----|--------------------------------:|---------------------------------:|-----:| | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | default | 0.894 | 0.637 | [link](https://huggingface.co/lmqg/mt5-small-esquad/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_esquad.default.json) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_esquad - dataset_name: default - input_types: ['paragraph_answer'] - output_types: ['question'] - prefix_types: None - model: google/mt5-small - max_length: 512 - max_length_output: 32 - epoch: 16 - batch: 64 - lr: 0.0005 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 1 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-esquad/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```