--- library_name: peft license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-cdsd1h-lora results: [] --- # whisper-medium-cdsd1h-lora This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7490 - Wer: 69.0689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.8319 | 1.0 | 559 | 0.8337 | 78.2453 | | 0.5523 | 2.0 | 1118 | 0.7616 | 73.5900 | | 0.3329 | 3.0 | 1677 | 0.7141 | 70.2328 | | 0.1729 | 4.0 | 2236 | 0.7248 | 70.4566 | | 0.0681 | 5.0 | 2795 | 0.7490 | 69.0689 | ### Framework versions - PEFT 0.13.2 - Transformers 4.44.2 - Pytorch 2.0.0+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1