--- tags: - vision - image-text-to-text --- # LLaVa-Next, leveraging [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) as LLM The LLaVA-NeXT model was proposed in [LLaVA-NeXT: Improved reasoning, OCR, and world knowledge](https://llava-vl.github.io/blog/2024-01-30-llava-next/) by Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, Yong Jae Lee. LLaVa-NeXT (also called LLaVa-1.6) improves upon [LLaVa-1.5](https://huggingface.co/transformers/main/model_doc/llava.html) by increasing the input image resolution and training on an improved visual instruction tuning dataset to improve OCR and common sense reasoning. Disclaimer: The team releasing LLaVa-NeXT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description LLaVa combines a pre-trained large language model with a pre-trained vision encoder for multimodal chatbot use cases. LLaVA 1.6 improves on LLaVA 1.5 BY: - Using [Mistral-7B](https://mistral.ai/news/announcing-mistral-7b/) (for this checkpoint) and [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) which has better commercial licenses, and bilingual support - More diverse and high quality data mixture - Dynamic high resolution ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62441d1d9fdefb55a0b7d12c/FPshq08TKYD0e-qwPLDVO.png) ## Intended uses & limitations You can use the raw model for tasks like image captioning, visual question answering, multimodal chatbot use cases. See the [model hub](https://huggingface.co/models?search=llava-hf) to look for other versions on a task that interests you. ### How to use Here's the prompt template for this model: ``` "[INST] \nWhat is shown in this image? [/INST]" ``` You can load and use the model like following: ```python from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration import torch from PIL import Image import requests processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True) model.to("cuda:0") # prepare image and text prompt, using the appropriate prompt template url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true" image = Image.open(requests.get(url, stream=True).raw) prompt = "[INST] \nWhat is shown in this image? [/INST]" inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") # autoregressively complete prompt output = model.generate(**inputs, max_new_tokens=100) print(processor.decode(output[0], skip_special_tokens=True)) ``` ### BibTeX entry and citation info ```bibtex @misc{liu2023improved, title={Improved Baselines with Visual Instruction Tuning}, author={Haotian Liu and Chunyuan Li and Yuheng Li and Yong Jae Lee}, year={2023}, eprint={2310.03744}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```