--- base_model: meta-llama/Meta-Llama-3-8B datasets: - llama-duo/synth_summarize_dataset_dedup library_name: peft license: llama3 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: llama3-8b-summarize-gpt4o-128k results: [] --- # llama3-8b-summarize-gpt4o-128k This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the llama-duo/synth_summarize_dataset_dedup dataset. It achieves the following results on the evaluation set: - Loss: 2.2606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8176 | 0.9954 | 109 | 2.1150 | | 0.7464 | 2.0 | 219 | 2.1313 | | 0.7128 | 2.9954 | 328 | 2.1444 | | 0.6924 | 4.0 | 438 | 2.1631 | | 0.6777 | 4.9954 | 547 | 2.1823 | | 0.6526 | 6.0 | 657 | 2.2078 | | 0.6326 | 6.9954 | 766 | 2.2296 | | 0.6311 | 8.0 | 876 | 2.2485 | | 0.6233 | 8.9954 | 985 | 2.2587 | | 0.6194 | 9.9543 | 1090 | 2.2606 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.2.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1