--- library_name: peft tags: - alignment-handbook - generated_from_trainer datasets: - llama-duo/synth_summarize_dataset_dedup base_model: google/gemma-7b model-index: - name: gemma7b-summarize-gemini1_5flash-128k results: [] --- # gemma7b-summarize-gemini1_5flash-128k This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the llama-duo/synth_summarize_dataset_dedup dataset. It achieves the following results on the evaluation set: - Loss: 2.4815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.067 | 1.0 | 208 | 2.5660 | | 0.9432 | 2.0 | 416 | 2.4475 | | 0.9222 | 3.0 | 624 | 2.4423 | | 0.8069 | 4.0 | 832 | 2.4327 | | 0.7635 | 5.0 | 1040 | 2.4233 | | 0.7364 | 6.0 | 1248 | 2.4451 | | 0.7168 | 7.0 | 1456 | 2.4510 | | 0.7064 | 8.0 | 1664 | 2.4729 | | 0.6934 | 9.0 | 1872 | 2.4781 | | 0.7018 | 10.0 | 2080 | 2.4815 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1