agent="hydra_pe_temporal" bs=8 lr=0.0002 cache="null" config="competition_training" epoch=20 # node 数量 replicas=8 dir=${agent}_vov_fixedpading_pe_temporal_modifyself_bs${bs}x${replicas}_ckpt ngc batch run \ -in dgx1v.32g.8.norm \ --ace nv-us-west-2 \ --label _wl___computer_vision \ -n ml-model.lkl_train._wl___computer_vision \ --result /result \ -i nvcr.io/nvidian/swaiinf/lzx-navsim \ --workspace q-2TlPKESo62ktTxOc8rYg:/zhenxinl_nuplan \ --port 6007 \ --array-type "MPI" \ --replicas $replicas \ --total-runtime "4D" \ --commandline " mpirun --allow-run-as-root -np $replicas -npernode 1 bash -c ' git pull; pip install --upgrade diffusers[torch]; MASTER_PORT=29500 MASTER_ADDR=launcher-svc-\${NGC_JOB_ID} WORLD_SIZE=\${NGC_ARRAY_SIZE} NODE_RANK=\${NGC_ARRAY_INDEX} \ python \${NAVSIM_DEVKIT_ROOT}/navsim/planning/script/run_training.py \ --config-name $config \ agent=$agent \ trainer.params.num_nodes=$replicas \ ~trainer.params.strategy \ trainer.params.max_epochs=$epoch \ dataloader.params.batch_size=$bs \ experiment_name=$dir \ cache_path=$cache \ agent.config.ckpt_path=$dir \ agent.lr=$lr \ split=trainval \ scene_filter=navtrain; ' "