--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-7e-05-finetuned-FER2013-7e-05 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.5259515570934256 --- # beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-7e-05-finetuned-FER2013-7e-05 This model is a fine-tuned version of [lixiqi/beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-7e-05](https://huggingface.co/lixiqi/beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-7e-05) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 1.5659 - Accuracy: 0.5260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6537 | 0.97 | 14 | 1.4980 | 0.4683 | | 1.4325 | 1.97 | 28 | 1.4777 | 0.5040 | | 1.1532 | 2.97 | 42 | 1.5007 | 0.4960 | | 1.0428 | 3.97 | 56 | 1.5480 | 0.4890 | | 0.8716 | 4.97 | 70 | 1.5659 | 0.5260 | | 0.892 | 5.97 | 84 | 1.6132 | 0.4960 | | 0.8109 | 6.97 | 98 | 1.5895 | 0.5167 | | 0.7413 | 7.97 | 112 | 1.6271 | 0.5202 | | 0.765 | 8.97 | 126 | 1.5991 | 0.5040 | | 0.6575 | 9.97 | 140 | 1.6041 | 0.4960 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1