# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation, ) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 __constants__ = ["downsample"] def __init__( self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None, ): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 __constants__ = ["downsample"] def __init__( self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None, ): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.0)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__( self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, widen=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None, ): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = width_per_group * widen self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError( "replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation) ) self.groups = groups self.base_width = width_per_group num_out_filters = width_per_group * widen self.conv1 = nn.Conv2d( 3, num_out_filters, kernel_size=7, stride=2, padding=3, bias=False ) self.bn1 = norm_layer(num_out_filters) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, num_out_filters, layers[0]) num_out_filters *= 2 self.layer2 = self._make_layer( block, num_out_filters, layers[1], stride=2, dilate=replace_stride_with_dilation[0] ) #num_out_filters *= 2 #self.layer3 = self._make_layer( # block, num_out_filters, layers[2], stride=2, dilate=replace_stride_with_dilation[1] #) #num_out_filters *= 2 #self.layer4 = self._make_layer( # block, num_out_filters, layers[3], stride=2, dilate=replace_stride_with_dilation[2] #) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) #self.fc = nn.Linear(512 * block.expansion * widen, num_classes) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append( block( self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer, ) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer, ) ) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) #x = self.layer3(x) #x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) #x = self.fc(x) return x def resnet50(**kwargs): return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) def resnet50w2(**kwargs): return ResNet(Bottleneck, [3, 4, 6, 3], widen=2, **kwargs) def resnet50w4(**kwargs): return ResNet(Bottleneck, [3, 4, 6, 3], widen=4, **kwargs) def resnet50w5(**kwargs): return ResNet(Bottleneck, [3, 4, 6, 3], widen=5, **kwargs) if __name__ == '__main__': import onnxruntime as ort x=torch.rand(1,3,224,224) model = resnet50w2() model.eval() swav_state_dict = torch.load('/opt/software/github/he-ai/swav_RN50w2_400ep_pretrain.pth.tar') for k in list(swav_state_dict.keys()): if k.startswith('module.layer3') or k.startswith('module.layer4') or k.startswith('module.pro'):del swav_state_dict[k] for k in list(swav_state_dict.keys()): swav_state_dict[k.replace('module.', '')] = swav_state_dict[k] del swav_state_dict[k] msg = model.load_state_dict(swav_state_dict, strict=False) print(msg) torch.save(swav_state_dict, 'swav_imagenet_layer2.pt') traced_script_module = torch.jit.trace(model, x) traced_script_module.save("traced_swav_imagenet_layer2.pt") traced_feature = traced_script_module(x).detach().cpu().numpy() print(traced_feature) print(model(x)) dynamic_axes={"x": {0:"batch_size"}, 'feature': {0:'batch_size'}} torch.onnx.export(model, x, "swav_imagenet_layer2.onnx", verbose=False, input_names=['x'], output_names=['feature'], dynamic_axes=dynamic_axes, do_constant_folding=True) ort_session = ort.InferenceSession("swav_imagenet_layer2.onnx") onnx_outputs = ort_session.run(None, {'x':x.numpy()}) print(onnx_outputs[0])