--- license: apache-2.0 tags: - mteb model-index: - name: kim_base_zh_v0 results: - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 46.66600000000001 - type: f1 value: 43.88121213919628 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringP2P name: MTEB CLSClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 33.55469933811146 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringS2S name: MTEB CLSClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 36.17977796122646 - task: type: Reranking dataset: type: C-MTEB/CMedQAv1-reranking name: MTEB CMedQAv1 config: default split: test revision: None metrics: - type: map value: 83.84687250720238 - type: mrr value: 86.34579365079364 - task: type: Reranking dataset: type: C-MTEB/CMedQAv2-reranking name: MTEB CMedQAv2 config: default split: test revision: None metrics: - type: map value: 84.7457752094449 - type: mrr value: 87.41591269841268 - task: type: PairClassification dataset: type: C-MTEB/CMNLI name: MTEB Cmnli config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 70.99218280216476 - type: cos_sim_ap value: 79.5838273070596 - type: cos_sim_f1 value: 73.01215092730762 - type: cos_sim_precision value: 67.09108716944172 - type: cos_sim_recall value: 80.07949497311199 - type: dot_accuracy value: 70.99218280216476 - type: dot_ap value: 79.58744690895374 - type: dot_f1 value: 73.01215092730762 - type: dot_precision value: 67.09108716944172 - type: dot_recall value: 80.07949497311199 - type: euclidean_accuracy value: 70.99218280216476 - type: euclidean_ap value: 79.5838273070596 - type: euclidean_f1 value: 73.01215092730762 - type: euclidean_precision value: 67.09108716944172 - type: euclidean_recall value: 80.07949497311199 - type: manhattan_accuracy value: 70.88394467829224 - type: manhattan_ap value: 79.42301231718942 - type: manhattan_f1 value: 72.72536687631029 - type: manhattan_precision value: 65.91297738932168 - type: manhattan_recall value: 81.10825344867898 - type: max_accuracy value: 70.99218280216476 - type: max_ap value: 79.58744690895374 - type: max_f1 value: 73.01215092730762 - task: type: Classification dataset: type: C-MTEB/IFlyTek-classification name: MTEB IFlyTek config: default split: validation revision: None metrics: - type: accuracy value: 47.34128510965756 - type: f1 value: 35.49963469301016 - task: type: Classification dataset: type: C-MTEB/JDReview-classification name: MTEB JDReview config: default split: test revision: None metrics: - type: accuracy value: 85.66604127579738 - type: ap value: 53.038152290755555 - type: f1 value: 80.14685686902159 - task: type: Reranking dataset: type: C-MTEB/Mmarco-reranking name: MTEB MMarcoReranking config: default split: dev revision: None metrics: - type: map value: 20.56449688140155 - type: mrr value: 19.60753968253968 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.38399462004035 - type: f1 value: 70.33023134666634 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.87222595830531 - type: f1 value: 74.25722751562503 - task: type: Classification dataset: type: C-MTEB/MultilingualSentiment-classification name: MTEB MultilingualSentiment config: default split: validation revision: None metrics: - type: accuracy value: 76.27000000000001 - type: f1 value: 75.9660773461064 - task: type: PairClassification dataset: type: C-MTEB/OCNLI name: MTEB Ocnli config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 67.35246345425013 - type: cos_sim_ap value: 69.69618171375657 - type: cos_sim_f1 value: 71.70665459483928 - type: cos_sim_precision value: 62.75752773375595 - type: cos_sim_recall value: 83.6325237592397 - type: dot_accuracy value: 67.35246345425013 - type: dot_ap value: 69.69618171375657 - type: dot_f1 value: 71.70665459483928 - type: dot_precision value: 62.75752773375595 - type: dot_recall value: 83.6325237592397 - type: euclidean_accuracy value: 67.35246345425013 - type: euclidean_ap value: 69.69618171375657 - type: euclidean_f1 value: 71.70665459483928 - type: euclidean_precision value: 62.75752773375595 - type: euclidean_recall value: 83.6325237592397 - type: manhattan_accuracy value: 66.81104493773688 - type: manhattan_ap value: 69.33781930832232 - type: manhattan_f1 value: 71.6342082980525 - type: manhattan_precision value: 59.78798586572438 - type: manhattan_recall value: 89.33474128827878 - type: max_accuracy value: 67.35246345425013 - type: max_ap value: 69.69618171375657 - type: max_f1 value: 71.70665459483928 - task: type: Classification dataset: type: C-MTEB/OnlineShopping-classification name: MTEB OnlineShopping config: default split: test revision: None metrics: - type: accuracy value: 93.05 - type: ap value: 91.26069801777923 - type: f1 value: 93.04149818231389 - task: type: Reranking dataset: type: C-MTEB/T2Reranking name: MTEB T2Reranking config: default split: dev revision: None metrics: - type: map value: 65.74883739850293 - type: mrr value: 75.47326869136282 - task: type: Classification dataset: type: C-MTEB/TNews-classification name: MTEB TNews config: default split: validation revision: None metrics: - type: accuracy value: 53.269999999999996 - type: f1 value: 51.410630382886445 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringP2P name: MTEB ThuNewsClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 63.344532225921434 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringS2S name: MTEB ThuNewsClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 60.33437882010517 - task: type: Classification dataset: type: C-MTEB/waimai-classification name: MTEB Waimai config: default split: test revision: None metrics: - type: accuracy value: 87.96000000000002 - type: ap value: 72.43737061465443 - type: f1 value: 86.48668399738767 --- ## Model Details Lim is a general text embedding model(chinese),We are continuously optimizing it. ## History 『2023-12-22』Published lim_base_zh_v0 model ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python model_name="liujiarik/lim_base_zh" from sentence_transformers import SentenceTransformer sentences = ['我换手机号了', '如果我换手机怎么办?'] model = SentenceTransformer(model_name) embeddings = model.encode(sentences) print(embeddings) ```