import logging import os import pickle import requests import tenacity import time import shutil import torch import torch.distributed as dist from PIL import Image from torchvision.utils import make_grid from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table from fvcore.nn import flop_count_str logger = logging.getLogger(__name__) NORM_MODULES = [ torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d, torch.nn.SyncBatchNorm, # NaiveSyncBatchNorm inherits from BatchNorm2d torch.nn.GroupNorm, torch.nn.InstanceNorm1d, torch.nn.InstanceNorm2d, torch.nn.InstanceNorm3d, torch.nn.LayerNorm, torch.nn.LocalResponseNorm, ] def register_norm_module(cls): NORM_MODULES.append(cls) return cls def is_main_process(): rank = 0 if 'OMPI_COMM_WORLD_SIZE' in os.environ: rank = int(os.environ['OMPI_COMM_WORLD_RANK']) return rank == 0 @torch.no_grad() def analysis_model(model, dump_input, verbose=False): model.eval() flops = FlopCountAnalysis(model, dump_input) total = flops.total() model.train() params_total = sum(p.numel() for p in model.parameters()) params_learned = sum( p.numel() for p in model.parameters() if p.requires_grad ) logger.info(f"flop count table:\n {flop_count_table(flops)}") if verbose: logger.info(f"flop count str:\n {flop_count_str(flops)}") logger.info(f" Total flops: {total / 1000 / 1000:.3f}M,") logger.info(f" Total params: {params_total / 1000 / 1000:.3f}M,") logger.info(f" Learned params: {params_learned / 1000 / 1000:.3f}M") return total, flop_count_table(flops), flop_count_str(flops) def gather_tensors(tensor): """ Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no gradient. """ tensors_gather = [ torch.ones_like(tensor) for _ in range(int(os.environ['WORLD_SIZE'])) ] dist.all_gather(tensors_gather, tensor, async_op=False) # need to do this to restore propagation of the gradients tensors_gather[int(os.environ['RANK'])] = tensor output = torch.cat(tensors_gather, dim=0) return output def is_valid_url(url): try: from urllib import parse return parse.urlparse(str(url)).scheme != '' except Exception: return False @tenacity.retry(stop=tenacity.stop_after_attempt(3)) def download_file(url, filepath): logger.info(f'Downloading from {url} to {filepath.absolute()}.') with requests.get(url, stream=True, allow_redirects=True, timeout=60) as r: if r.status_code > 200: raise RuntimeError(f'Failed in downloading from {url}, status code {r.status_code}.') with open(filepath, 'wb') as f: shutil.copyfileobj(r.raw, f, length=4194304) class DistributionGridFactory: """ DistributionGrid Factory for helping create, cache and share the DistributionGrid based on the usage. The DistributionGrid con be shared cross modules only the when this 3 conditions: 1. expert parallel group size 2. expert parallel replica group size, are the same. """ distribution_grid_cache = {} @classmethod def get_distribution_grid(cls, expert_parallel_group_size, expert_parallel_replica_group_size, ddp_type): """ Get the DistributionGrid by the conditions. Args: expert_parallel_group_size: expert parallel group size expert_parallel_replica_group_size: expert parallel replica group size ddp_type: distributed data parallel type. "DDP" of the recipe, only allow ddp_type is "MAINZ", "OSS" or "ShardedDDP". Returns: new created DistributionGrid or shared DistributionGrid. Notes: Currently get_distribution_grid only support "DDP" is "MAINZ", "OSS" or "ShardedDDP". """ # TODO: Support cases that "DDP" is "FSDP". # For "FSDP", we use the DG of self.opt['fsdp_expert_grid'] which is initialize in DistributedTrainer directly. ddp_type = ddp_type.upper() assert ddp_type in ["MAINZ", "OSS", "SHARDEDDDP"], f'DistributionGrid Factory only support "DDP" is "MAINZ",' \ f' "OSS" or "ShardedDDP".' \ f' But currently "DDP" is {ddp_type}' cached_distributed_grid = cls.distribution_grid_cache.get( (expert_parallel_group_size, expert_parallel_replica_group_size), None) if cached_distributed_grid is not None: return cached_distributed_grid else: from ort_moe.grids import DistributionGrid distributed_grid = DistributionGrid(expert_parallel_group_size=expert_parallel_group_size, expert_parallel_replica_group_size=expert_parallel_replica_group_size) cls.distribution_grid_cache[expert_parallel_group_size, expert_parallel_replica_group_size] = distributed_grid return distributed_grid def get_world_size(): if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def get_rank(): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def synchronize(): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() rank = dist.get_rank() if world_size == 1: return def _send_and_wait(r): if rank == r: tensor = torch.tensor(0, device="cuda") else: tensor = torch.tensor(1, device="cuda") dist.broadcast(tensor, r) while tensor.item() == 1: time.sleep(1) _send_and_wait(0) # now sync on the main process _send_and_wait(1) def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") # obtain Tensor size of each rank local_size = torch.LongTensor([tensor.numel()]).to("cuda") size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda")) if local_size != max_size: padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda") tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def all_gather_cpu(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors). Args: data: any picklable object group: a torch process group. By default, will use a group which contains all ranks on gloo backend. Returns: list[data]: list of data gathered from each rank """ def _get_global_gloo_group(): """ Return a process group based on gloo backend, containing all the ranks The result is cached. """ if dist.get_backend() == "nccl": return dist.new_group(backend="gloo") else: return dist.group.WORLD if get_world_size() == 1: return [data] group = _get_global_gloo_group() # use CPU group by default, to reduce GPU RAM usage. world_size = dist.get_world_size(group) if world_size == 1: return [data] output = [None for _ in range(world_size)] dist.all_gather_object(output, data, group=group) return output def reduce_dict(input_dict, average=True): """ Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum Reduce the values in the dictionary from all processes so that process with rank 0 has the averaged results. Returns a dict with the same fields as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.reduce(values, dst=0) if dist.get_rank() == 0 and average: # only main process gets accumulated, so only divide by # world_size in this case values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict def broadcast_data(data): if not torch.distributed.is_initialized(): return data rank = dist.get_rank() if rank == 0: data_tensor = torch.tensor(data + [0], device="cuda") else: data_tensor = torch.tensor(data + [1], device="cuda") torch.distributed.broadcast(data_tensor, 0) while data_tensor.cpu().numpy()[-1] == 1: time.sleep(1) return data_tensor.cpu().numpy().tolist()[:-1] def reduce_sum(tensor): if get_world_size() <= 1: return tensor tensor = tensor.clone() dist.all_reduce(tensor, op=dist.ReduceOp.SUM) return tensor def save_result(result, filename): output_folder = os.path.dirname(filename) basename = os.path.splitext(os.path.basename(filename))[0] os.makedirs(output_folder, exist_ok=True) if isinstance(result, torch.Tensor) and result.ndim in [3,4]: if result.ndim==3 and result.size(0) not in [1,3]: result = make_grid(result.unsqueeze(1)) elif result.ndim==4: result = make_grid(result) else: result = make_grid([result]) im = Image.fromarray(result.clamp_(0, 255).permute(1, 2, 0).to(torch.uint8).numpy()) im.save(os.path.join(output_folder, '{}.png'.format(basename))) else: torch.save(result, os.path.join(output_folder, '{}.pth'.format(basename)))