whisper-small-vi / README.md
linl03's picture
Upload WhisperForConditionalGeneration
983650b verified
|
raw
history blame
2.13 kB
metadata
base_model: openai/whisper-small-v3
datasets:
  - mozilla-foundation/common_voice_11_0
language:
  - vi
library_name: transformers
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: Whisper small vi - Ox
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: vi
          split: test
          args: 'config: vi, split: test'
        metrics:
          - type: wer
            value: 14.738458164272398
            name: Wer

Whisper small vi - Ox

This model is a fine-tuned version of openai/whisper-small-v3 on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2529
  • Wer: 14.7385

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2196 1.3928 1000 0.3174 19.4758
0.0938 2.7855 2000 0.2513 16.0325
0.014 4.1783 3000 0.2467 14.4972
0.0109 5.5710 4000 0.2529 14.7385

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1
  • Datasets 3.0.2
  • Tokenizers 0.20.1