--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: imdb_bert results: [] --- # imdb_bert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5157 - Accuracy: 0.9400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2773 | 1.0 | 782 | 0.1822 | 0.9289 | | 0.1226 | 2.0 | 1564 | 0.1759 | 0.9334 | | 0.0781 | 3.0 | 2346 | 0.3157 | 0.9292 | | 0.0404 | 4.0 | 3128 | 0.3269 | 0.9353 | | 0.0297 | 5.0 | 3910 | 0.3412 | 0.9358 | | 0.0156 | 6.0 | 4692 | 0.3936 | 0.9356 | | 0.011 | 7.0 | 5474 | 0.4316 | 0.9392 | | 0.0054 | 8.0 | 6256 | 0.4882 | 0.9389 | | 0.0019 | 9.0 | 7038 | 0.4972 | 0.9397 | | 0.0011 | 10.0 | 7820 | 0.5157 | 0.9400 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.2 - Tokenizers 0.21.0