reward_controlnet / app_canny.py
Ming Li
update demo
cce8954
#!/usr/bin/env python
import gradio as gr
from settings import (
DEFAULT_IMAGE_RESOLUTION,
DEFAULT_NUM_IMAGES,
MAX_IMAGE_RESOLUTION,
MAX_NUM_IMAGES,
MAX_SEED,
)
from utils import randomize_seed_fn
examples = [
[
"images/canny/canny_demo.jpg",
"BEAUTIFUL PORTRAIT PAINTINGS BY EMMA UBER",
],
]
def create_demo(process):
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
image = gr.Image()
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(
label="Number of images", minimum=1, maximum=MAX_NUM_IMAGES, value=DEFAULT_NUM_IMAGES, step=1
)
image_resolution = gr.Slider(
label="Image resolution",
minimum=256,
maximum=MAX_IMAGE_RESOLUTION,
value=DEFAULT_IMAGE_RESOLUTION,
step=256,
)
canny_low_threshold = gr.Slider(
label="Canny low threshold", minimum=0, maximum=1.0, value=0.1, step=0.05
)
canny_high_threshold = gr.Slider(
label="Canny high threshold", minimum=0, maximum=1.0, value=0.2, step=0.05
)
num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=20, step=1)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
a_prompt = gr.Textbox(label="Additional prompt", value="high-quality, extremely detailed, 4K")
n_prompt = gr.Textbox(
label="Negative prompt",
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
)
with gr.Column():
result = gr.Gallery(label="Output", show_label=False, columns=2, object_fit="scale-down")
gr.Examples(
examples=examples,
inputs=[
image,
prompt,
guidance_scale,
seed,
],
outputs=result,
fn=process,
)
inputs = [
image,
prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
num_steps,
guidance_scale,
seed,
canny_low_threshold,
canny_high_threshold,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=process,
inputs=inputs,
outputs=result,
api_name=False,
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=process,
inputs=inputs,
outputs=result,
api_name="canny",
)
return demo
if __name__ == "__main__":
from model import Model
model = Model(task_name="Canny")
demo = create_demo(model.process_canny)
demo.queue().launch()