--- library_name: transformers license: mit base_model: gpt2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: gpt2-qnli results: [] --- # gpt2-qnli This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3356 - Accuracy: 0.8894 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.387 | 1.0 | 6547 | 0.3051 | 0.8706 | | 0.3131 | 2.0 | 13094 | 0.3329 | 0.8649 | | 0.2659 | 3.0 | 19641 | 0.2979 | 0.8889 | | 0.2127 | 4.0 | 26188 | 0.3356 | 0.8894 | | 0.1845 | 5.0 | 32735 | 0.3882 | 0.8883 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0