--- language: - en --- # pgdyn-plan This is a pretrained model for the planning component of the PG_Dyn system, described in the EACL 2023 paper "Document-Level Planning for Text Simplification". It is the be used in conjunction with [the simplification component](https://huggingface.co/liamcripwell/pgdyn-simp) to form the full pipeline. The code [in this repo](https://github.com/liamcripwell/plan_simp) should be used. ## How to use Here is how to load this model in PyTorch: ```python from plan_simp.models.classifier import load_planner from plan_simp.models.bart import load_simplifier # contextual simplification planner planner, p_tokenizer, p_hparams = load_planner("liamcripwell/pgdyn-plan") # simplification model simplifier, tokenizer, hparams = load_simplifier("liamcripwell/pgdyn-simp") ``` To perform end-to-end planning+simplification with dynamic document context, use the commands below. This assumed data is in a `.csv` format and context representations have been generated for each input document. ```bash # using planner python plan_simp/scripts/generate.py dynamic --clf_model_ckpt= # e.g. liamcripwell/pgdyn-plan --model_ckpt= # e.g. liamcripwell/pgdyn-simp --test_file= --doc_id_col=pair_id # document identifier for each sentence --context_doc_id=c_id --context_dir= --reading_lvl=s_level --out_file= # manual specification of operations (no planner) python plan_simp/scripts/generate.py inference --model_ckpt= # e.g. liamcripwell/pgdyn-simp --test_file= --op_col=label --reading_lvl=s_level --out_file= ```