--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer datasets: - harem metrics: - precision - recall - f1 - accuracy model-index: - name: NER_harem_bert-base-portuguese-cased results: - task: name: Token Classification type: token-classification dataset: name: harem type: harem config: default split: test args: default metrics: - name: Precision type: precision value: 0.6852879944482998 - name: Recall type: recall value: 0.7377661561449383 - name: F1 type: f1 value: 0.7105594531390537 - name: Accuracy type: accuracy value: 0.952219112355058 --- # NER_harem_bert-base-portuguese-cased This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the harem dataset. It achieves the following results on the evaluation set: - Loss: 0.2351 - Precision: 0.6853 - Recall: 0.7378 - F1: 0.7106 - Accuracy: 0.9522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 16 | 0.7692 | 0.0 | 0.0 | 0.0 | 0.8358 | | No log | 2.0 | 32 | 0.4831 | 0.3140 | 0.2731 | 0.2921 | 0.8790 | | No log | 3.0 | 48 | 0.3405 | 0.4692 | 0.4897 | 0.4793 | 0.9119 | | No log | 4.0 | 64 | 0.2747 | 0.5481 | 0.6156 | 0.5799 | 0.9340 | | No log | 5.0 | 80 | 0.2282 | 0.6077 | 0.6758 | 0.6399 | 0.9443 | | No log | 6.0 | 96 | 0.2145 | 0.6267 | 0.6892 | 0.6565 | 0.9479 | | No log | 7.0 | 112 | 0.2223 | 0.6395 | 0.6926 | 0.6650 | 0.9493 | | No log | 8.0 | 128 | 0.2100 | 0.6822 | 0.7378 | 0.7089 | 0.9530 | | No log | 9.0 | 144 | 0.2077 | 0.6810 | 0.7497 | 0.7137 | 0.9537 | | No log | 10.0 | 160 | 0.2173 | 0.6846 | 0.7460 | 0.7140 | 0.9523 | | No log | 11.0 | 176 | 0.2226 | 0.7001 | 0.7594 | 0.7285 | 0.9542 | | No log | 12.0 | 192 | 0.2204 | 0.7015 | 0.7568 | 0.7281 | 0.9538 | | No log | 13.0 | 208 | 0.2278 | 0.6746 | 0.7411 | 0.7063 | 0.9533 | | No log | 14.0 | 224 | 0.2351 | 0.6853 | 0.7378 | 0.7106 | 0.9522 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2